Name | autodistill-llava JSON |
Version |
0.1.0
JSON |
| download |
home_page | |
Summary | LLaVA for use with Autodistill |
upload_time | 2023-10-16 13:05:00 |
maintainer | |
docs_url | None |
author | Roboflow |
requires_python | >=3.7 |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
>
</a>
</p>
</div>
# Autodistill LLaVA Module
This repository contains the code supporting the LLaVA base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[LLaVA](https://github.com/haotian-liu/LLaVA) is a multi-modal language model with object detection capabilities. You can use LLaVA with autodistill for object detection. [Learn more about LLaVA 1.5](https://blog.roboflow.com/first-impressions-with-llava-1-5/), the most recent version of LLaVA at the time of releasing this package.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [LLaVA Autodistill documentation](https://autodistill.github.io/autodistill/base_models/llava/).
## Installation
To use CLIP with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-clip
```
## Quickstart
```python
from autodistill_llava import LLaVA
# define an ontology to map class names to our LLaVA prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = LLaVA(
ontology=CaptionOntology(
{
"a forklift": "forklift"
}
)
)
base_model.label("./context_images", extension=".jpeg")
```
## License
This model is licensed under an [Apache 2.0 License](LICENSE).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "",
"name": "autodistill-llava",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/c9/bd/a09288a79fae2986fdb03d371c9482b3237f87a4cce5b738f9e2789f476d/autodistill-llava-0.1.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill LLaVA Module\n\nThis repository contains the code supporting the LLaVA base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[LLaVA](https://github.com/haotian-liu/LLaVA) is a multi-modal language model with object detection capabilities. You can use LLaVA with autodistill for object detection. [Learn more about LLaVA 1.5](https://blog.roboflow.com/first-impressions-with-llava-1-5/), the most recent version of LLaVA at the time of releasing this package.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [LLaVA Autodistill documentation](https://autodistill.github.io/autodistill/base_models/llava/).\n\n## Installation\n\nTo use CLIP with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-clip\n```\n\n## Quickstart\n\n```python\nfrom autodistill_llava import LLaVA\n\n# define an ontology to map class names to our LLaVA prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = LLaVA(\n ontology=CaptionOntology(\n {\n \"a forklift\": \"forklift\"\n }\n )\n)\nbase_model.label(\"./context_images\", extension=\".jpeg\")\n```\n\n\n## License\n\nThis model is licensed under an [Apache 2.0 License](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "LLaVA for use with Autodistill",
"version": "0.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c64f692de445291ce22e5081101a3902e1647d2c82e1a09b46ce2ef0178b9569",
"md5": "de29a3863b3b02762b9e4c1b99893548",
"sha256": "84161f8c0f6eb16567b8ab237b37b19495e762116185f88a3c2225176773d4b9"
},
"downloads": -1,
"filename": "autodistill_llava-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "de29a3863b3b02762b9e4c1b99893548",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 8993,
"upload_time": "2023-10-16T13:04:57",
"upload_time_iso_8601": "2023-10-16T13:04:57.572762Z",
"url": "https://files.pythonhosted.org/packages/c6/4f/692de445291ce22e5081101a3902e1647d2c82e1a09b46ce2ef0178b9569/autodistill_llava-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c9bda09288a79fae2986fdb03d371c9482b3237f87a4cce5b738f9e2789f476d",
"md5": "715ac3114565cbb967ce62977ebac4d2",
"sha256": "ccfa4651a8c8efb920518d85618381297c90a19d4a28239cae103559e137eb91"
},
"downloads": -1,
"filename": "autodistill-llava-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "715ac3114565cbb967ce62977ebac4d2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 8657,
"upload_time": "2023-10-16T13:05:00",
"upload_time_iso_8601": "2023-10-16T13:05:00.210411Z",
"url": "https://files.pythonhosted.org/packages/c9/bd/a09288a79fae2986fdb03d371c9482b3237f87a4cce5b738f9e2789f476d/autodistill-llava-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-16 13:05:00",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "autodistill-llava"
}