autodistill-owl-vit


Nameautodistill-owl-vit JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-owl-vit
SummaryOWL-ViT module for use with Autodistill
upload_time2023-12-06 09:18:45
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
      >
    </a>
  </p>
</div>

# Autodistill OWL-ViT Module

This repository contains the code supporting the OWL-ViT base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[OWL-ViT](https://huggingface.co/google/owlvit-base-patch32) is a transformer-based object detection model developed by Google Research.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [OWL-ViT Autodistill documentation](https://autodistill.github.io/autodistill/base_models/owlvit/).

## Installation

To use OWL-ViT with autodistill, you need to install the following dependency:


```bash
pip3 install autodistill-owl-vit
```

## Quickstart

```python
from autodistill_owl_vit import OWLViT

# define an ontology to map class names to our OWLViT prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = OWLViT(
    ontology=CaptionOntology(
        {
            "person": "person",
            "a forklift": "forklift"
        }
    )
)
base_model.label("./context_images", extension=".jpg")
```

## License

The code in this repository is licensed under an [Apache 2.0 license](LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-owl-vit",
    "name": "autodistill-owl-vit",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/5c/dc/c4117f733147098d8068ac4270ac75a23152d4e113cc238bcbbb23ac0466/autodistill_owl_vit-0.1.2.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill OWL-ViT Module\n\nThis repository contains the code supporting the OWL-ViT base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[OWL-ViT](https://huggingface.co/google/owlvit-base-patch32) is a transformer-based object detection model developed by Google Research.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [OWL-ViT Autodistill documentation](https://autodistill.github.io/autodistill/base_models/owlvit/).\n\n## Installation\n\nTo use OWL-ViT with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-owl-vit\n```\n\n## Quickstart\n\n```python\nfrom autodistill_owl_vit import OWLViT\n\n# define an ontology to map class names to our OWLViT prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = OWLViT(\n    ontology=CaptionOntology(\n        {\n            \"person\": \"person\",\n            \"a forklift\": \"forklift\"\n        }\n    )\n)\nbase_model.label(\"./context_images\", extension=\".jpg\")\n```\n\n## License\n\nThe code in this repository is licensed under an [Apache 2.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "OWL-ViT module for use with Autodistill",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-owl-vit"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "275f845a8240f8a09a473d07026a81b1cd523a4a50107bdb00849047f99259ae",
                "md5": "3b9a0372b01e39c0e00ed1460fc27029",
                "sha256": "9763242677b87f1c18ad01063993514b33111621fcd8ed42002c9f47aa9ebc0a"
            },
            "downloads": -1,
            "filename": "autodistill_owl_vit-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b9a0372b01e39c0e00ed1460fc27029",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 10904,
            "upload_time": "2023-12-06T09:18:43",
            "upload_time_iso_8601": "2023-12-06T09:18:43.475857Z",
            "url": "https://files.pythonhosted.org/packages/27/5f/845a8240f8a09a473d07026a81b1cd523a4a50107bdb00849047f99259ae/autodistill_owl_vit-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5cdcc4117f733147098d8068ac4270ac75a23152d4e113cc238bcbbb23ac0466",
                "md5": "7037776a2ded583fe7dac5241b5cd7ed",
                "sha256": "3e8ed1c9562d4c4e86aa654e209a88c6089b2fc4f25c1e2eaae8b8ff0e641148"
            },
            "downloads": -1,
            "filename": "autodistill_owl_vit-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "7037776a2ded583fe7dac5241b5cd7ed",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 9730,
            "upload_time": "2023-12-06T09:18:45",
            "upload_time_iso_8601": "2023-12-06T09:18:45.263272Z",
            "url": "https://files.pythonhosted.org/packages/5c/dc/c4117f733147098d8068ac4270ac75a23152d4e113cc238bcbbb23ac0466/autodistill_owl_vit-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 09:18:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-owl-vit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-owl-vit"
}
        
Elapsed time: 0.15173s