autodistill-owlv2


Nameautodistill-owlv2 JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-owlv2
SummaryOWLv2 base model for use with Autodistill.
upload_time2023-12-06 09:11:01
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
      >
    </a>
  </p>
</div>

# Autodistill OWLv2 Module

This repository contains the code supporting the OWLv2 base model for use with [Autodistill](https://github.com/autodistill/autodistill).

OWLv2 is a zero-shot object detection model that follows from on the OWL-ViT architecture. OWLv2 has an open vocabulary, which means you can provide arbitrary text prompts for the model. You can use OWLv2 with autodistill for object detection.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [OWLv2 Autodistill documentation](https://autodistill.github.io/autodistill/base_models/owlv2/).

## Installation

To use OWLv2 with autodistill, you need to install the following dependency:


```bash
pip3 install autodistill-owlv2
```

## Quickstart

```python
from autodistill_owlv2 import OWLv2
from autodistill.detection import CaptionOntology

# define an ontology to map class names to our OWLv2 prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = OWLv2(
    ontology=CaptionOntology(
        {
            "person": "person",
            "a forklift": "forklift"
        }
    )
)

# run inference on a single image
results = base_model.predict("./context_images/image.png")

base_model.label("./context_images", extension=".jpeg")
```


## License

This model is licensed under an [Apache 2.0](LICENSE) ([see original model implementation license](https://huggingface.co/docs/transformers/main/en/model_doc/owlv2), and the corresponding [HuggingFace Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/owlv2)).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-owlv2",
    "name": "autodistill-owlv2",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/db/37/fc49346158940fd1281f93e5169896495bf5d593c507c0335edeb5bf509d/autodistill-owlv2-0.1.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill OWLv2 Module\n\nThis repository contains the code supporting the OWLv2 base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\nOWLv2 is a zero-shot object detection model that follows from on the OWL-ViT architecture. OWLv2 has an open vocabulary, which means you can provide arbitrary text prompts for the model. You can use OWLv2 with autodistill for object detection.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [OWLv2 Autodistill documentation](https://autodistill.github.io/autodistill/base_models/owlv2/).\n\n## Installation\n\nTo use OWLv2 with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-owlv2\n```\n\n## Quickstart\n\n```python\nfrom autodistill_owlv2 import OWLv2\nfrom autodistill.detection import CaptionOntology\n\n# define an ontology to map class names to our OWLv2 prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = OWLv2(\n    ontology=CaptionOntology(\n        {\n            \"person\": \"person\",\n            \"a forklift\": \"forklift\"\n        }\n    )\n)\n\n# run inference on a single image\nresults = base_model.predict(\"./context_images/image.png\")\n\nbase_model.label(\"./context_images\", extension=\".jpeg\")\n```\n\n\n## License\n\nThis model is licensed under an [Apache 2.0](LICENSE) ([see original model implementation license](https://huggingface.co/docs/transformers/main/en/model_doc/owlv2), and the corresponding [HuggingFace Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/owlv2)).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "OWLv2 base model for use with Autodistill.",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-owlv2"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5d0e1c7e3a06b7fd78f37d6f8da1c6cb863a4e0c28724e17c6cc2442c68c970c",
                "md5": "bea61a93f2066a0221163cc307a2e1c9",
                "sha256": "1d2c564849e77bcbfb07b2a6ee29c50f282f7256de6c09662d93bc43eb80054e"
            },
            "downloads": -1,
            "filename": "autodistill_owlv2-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bea61a93f2066a0221163cc307a2e1c9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 7844,
            "upload_time": "2023-12-06T09:10:54",
            "upload_time_iso_8601": "2023-12-06T09:10:54.264380Z",
            "url": "https://files.pythonhosted.org/packages/5d/0e/1c7e3a06b7fd78f37d6f8da1c6cb863a4e0c28724e17c6cc2442c68c970c/autodistill_owlv2-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "db37fc49346158940fd1281f93e5169896495bf5d593c507c0335edeb5bf509d",
                "md5": "43c05bf362f3175007803aa2e0e19cc7",
                "sha256": "ee823e4cc7ed07e74412c73c2a454f1c1f5a61c9651b27aeeb672b172901ebb2"
            },
            "downloads": -1,
            "filename": "autodistill-owlv2-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "43c05bf362f3175007803aa2e0e19cc7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 7520,
            "upload_time": "2023-12-06T09:11:01",
            "upload_time_iso_8601": "2023-12-06T09:11:01.034267Z",
            "url": "https://files.pythonhosted.org/packages/db/37/fc49346158940fd1281f93e5169896495bf5d593c507c0335edeb5bf509d/autodistill-owlv2-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 09:11:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-owlv2",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-owlv2"
}
        
Elapsed time: 0.14322s