<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
>
</a>
</p>
</div>
# Autodistill Segment Anything HQ Module
This repository contains the code supporting the Segment Anything base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[SAM HQ](https://github.com/SysCV/sam-hq) is a zero-shot segmentation model capable of producing detailed masks, developed by [ETH VIS](https://github.com/SysCV). SAM HQ can segment an entire image into masks, or use points to segment specific parts of an object. You can use Segment Anything with Autodistill to segment objects. Segment Anything does not assign classes, so you should use SAM HQ model with a tool like Grounding DINO or GPT-4V.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [SAM HQ Autodistill documentation](https://autodistill.github.io/autodistill/base_models/samhq/).
## Installation
To use SAM HQ with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-sam-hq
```
## Quickstart
```python
from autodistill_sam_hq import HQSAM
base_model = HQSAM(None)
masks = base_model.predict("./image.jpeg")
print(masks)
```
## License
This project is licensed under an [Apache 2.0 license](LICENSE).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "https://github.com/autodistill/autodistill-sam-hq",
"name": "autodistill-sam-hq",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/69/5a/42aefd1780f26ae994eca9e3cefff4a7158d977f5de96c1d2db6612f6ba8/autodistill-sam-hq-0.1.1.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill Segment Anything HQ Module\n\nThis repository contains the code supporting the Segment Anything base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[SAM HQ](https://github.com/SysCV/sam-hq) is a zero-shot segmentation model capable of producing detailed masks, developed by [ETH VIS](https://github.com/SysCV). SAM HQ can segment an entire image into masks, or use points to segment specific parts of an object. You can use Segment Anything with Autodistill to segment objects. Segment Anything does not assign classes, so you should use SAM HQ model with a tool like Grounding DINO or GPT-4V.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [SAM HQ Autodistill documentation](https://autodistill.github.io/autodistill/base_models/samhq/).\n\n## Installation\n\nTo use SAM HQ with autodistill, you need to install the following dependency:\n\n```bash\npip3 install autodistill-sam-hq\n```\n\n## Quickstart\n\n```python\nfrom autodistill_sam_hq import HQSAM\n\nbase_model = HQSAM(None)\n\nmasks = base_model.predict(\"./image.jpeg\")\n\nprint(masks)\n```\n\n## License\n\nThis project is licensed under an [Apache 2.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "Segment Anything High Quality (SAM HQ) model for use with Autodistill",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/autodistill/autodistill-sam-hq"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "eeda72c21fb1431467d9326115084ad0ca359540e3925c681f5365b9bc033c2b",
"md5": "638af2b7ac55419cffb68969423f4dbc",
"sha256": "143005c7450087a638ebbcb290815509826e82ec0b498324e5a45b653eec2c5a"
},
"downloads": -1,
"filename": "autodistill_sam_hq-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "638af2b7ac55419cffb68969423f4dbc",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 7781,
"upload_time": "2023-12-06T10:16:53",
"upload_time_iso_8601": "2023-12-06T10:16:53.807221Z",
"url": "https://files.pythonhosted.org/packages/ee/da/72c21fb1431467d9326115084ad0ca359540e3925c681f5365b9bc033c2b/autodistill_sam_hq-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "695a42aefd1780f26ae994eca9e3cefff4a7158d977f5de96c1d2db6612f6ba8",
"md5": "45fe7589fbd9ec1c5116018a24161243",
"sha256": "afa881dd325e923472f3858c3193217b9c13415a493de7fb76a0d9985a35f83b"
},
"downloads": -1,
"filename": "autodistill-sam-hq-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "45fe7589fbd9ec1c5116018a24161243",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 9416,
"upload_time": "2023-12-06T10:16:54",
"upload_time_iso_8601": "2023-12-06T10:16:54.831372Z",
"url": "https://files.pythonhosted.org/packages/69/5a/42aefd1780f26ae994eca9e3cefff4a7158d977f5de96c1d2db6612f6ba8/autodistill-sam-hq-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-06 10:16:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autodistill",
"github_project": "autodistill-sam-hq",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "autodistill-sam-hq"
}