<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
>
</a>
</p>
</div>
# Autodistill SigLIP Module
This repository contains the code supporting the SigLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).
[CLIP](https://github.com/openai/CLIP), developed by OpenAI, is a computer vision model trained using pairs of images and text. You can use CLIP with autodistill for image classification.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [SigLIP Autodistill documentation](https://autodistill.github.io/autodistill/base_models/siglip/).
## Installation
To use SigLIP with autodistill, you need to install the following dependency:
```bash
pip3 install autodistill-clip
```
## Quickstart
```python
from autodistill_siglip import SigLIP
from autodistill.detection import CaptionOntology
# define an ontology to map class names to our SigLIP prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
labels = ["person", "a forklift"]
base_model = SigLIP(
ontology=CaptionOntology({item: item for item in labels})
)
results = base_model.predict("image.jpeg", confidence=0.1)
top_1 = results.get_top_k(1)
# show top label
print(labels[top_1[0][0]])
# label folder of images
base_model.label("./context_images", extension=".jpeg")
```
## License
The SigLIP model is licensed under an [Apache 2.0 license](https://huggingface.co/google/siglip-base-patch16-224).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "https://github.com/autodistill/autodistill-siglip",
"name": "autodistill-siglip",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/6b/78/5f4a460f23422b71b2cb40fc3166014494a0740ec1b8858c4c1ce407c8f7/autodistill-siglip-0.1.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill SigLIP Module\n\nThis repository contains the code supporting the SigLIP base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[CLIP](https://github.com/openai/CLIP), developed by OpenAI, is a computer vision model trained using pairs of images and text. You can use CLIP with autodistill for image classification.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [SigLIP Autodistill documentation](https://autodistill.github.io/autodistill/base_models/siglip/).\n\n## Installation\n\nTo use SigLIP with autodistill, you need to install the following dependency:\n\n\n```bash\npip3 install autodistill-clip\n```\n\n## Quickstart\n\n```python\nfrom autodistill_siglip import SigLIP\nfrom autodistill.detection import CaptionOntology\n\n# define an ontology to map class names to our SigLIP prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nlabels = [\"person\", \"a forklift\"]\nbase_model = SigLIP(\n ontology=CaptionOntology({item: item for item in labels})\n)\n\nresults = base_model.predict(\"image.jpeg\", confidence=0.1)\n\ntop_1 = results.get_top_k(1)\n\n# show top label\nprint(labels[top_1[0][0]])\n\n# label folder of images\nbase_model.label(\"./context_images\", extension=\".jpeg\")\n```\n\n\n## License\n\nThe SigLIP model is licensed under an [Apache 2.0 license](https://huggingface.co/google/siglip-base-patch16-224).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "SigLIP base model for use with Autodistill",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/autodistill/autodistill-siglip"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1a7b016a0add64cb005eab853d3370f68e0ffc2a4d0b200f925e83cff5f8f961",
"md5": "092d5c91f01143ddebfbd242e6f6d687",
"sha256": "2815075ea1fb39b21c0a18246285efebcc260e7b5695f5f5b7853cdca9d77c95"
},
"downloads": -1,
"filename": "autodistill_siglip-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "092d5c91f01143ddebfbd242e6f6d687",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 3293,
"upload_time": "2024-02-16T22:09:46",
"upload_time_iso_8601": "2024-02-16T22:09:46.261409Z",
"url": "https://files.pythonhosted.org/packages/1a/7b/016a0add64cb005eab853d3370f68e0ffc2a4d0b200f925e83cff5f8f961/autodistill_siglip-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6b785f4a460f23422b71b2cb40fc3166014494a0740ec1b8858c4c1ce407c8f7",
"md5": "4eea9d615bb45bccbb0b1d6596d39ff6",
"sha256": "cdc3f60d855550e20908fdf9c3e6c8cb68085c32d7363f9ace06a32868f8e072"
},
"downloads": -1,
"filename": "autodistill-siglip-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "4eea9d615bb45bccbb0b1d6596d39ff6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 4037,
"upload_time": "2024-02-16T22:09:48",
"upload_time_iso_8601": "2024-02-16T22:09:48.279336Z",
"url": "https://files.pythonhosted.org/packages/6b/78/5f4a460f23422b71b2cb40fc3166014494a0740ec1b8858c4c1ce407c8f7/autodistill-siglip-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-16 22:09:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autodistill",
"github_project": "autodistill-siglip",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "autodistill-siglip"
}