<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
>
</a>
</p>
</div>
# Autodistill ViT Module
This repository contains the code supporting the ViT target model for use with [Autodistill](https://github.com/autodistill/autodistill).
[ViT](https://huggingface.co/google/vit-base-patch16-224-in21k) is a classification model pre-trained on ImageNet-21k, developed by Google. You can train ViT classification models using Autodistill.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [ViT Autodistill documentation](https://autodistill.github.io/autodistill/target_models/vit/).
## Installation
To use the ViT target model, you will need to install the following dependency:
```bash
pip3 install autodistill-vit
```
## Quickstart
```python
from autodistill_vit import ViT
target_model = ViT()
# train a model from a classification folder structure
target_model.train("./context_images_labeled/", epochs=200)
# run inference on the new model
pred = target_model.predict("./context_images_labeled/train/images/dog-7.jpg", conf=0.01)
```
## License
The code in this repository is licensed under an [Apache 2.0 license](LICENSE).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "https://github.com/autodistill/autodistill-vit",
"name": "autodistill-vit",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/12/ba/706462907af88808df357a3513c674335af226d1276ec26bd56369149c24/autodistill-vit-0.1.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill ViT Module\n\nThis repository contains the code supporting the ViT target model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[ViT](https://huggingface.co/google/vit-base-patch16-224-in21k) is a classification model pre-trained on ImageNet-21k, developed by Google. You can train ViT classification models using Autodistill.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [ViT Autodistill documentation](https://autodistill.github.io/autodistill/target_models/vit/).\n\n## Installation\n\nTo use the ViT target model, you will need to install the following dependency:\n\n```bash\npip3 install autodistill-vit\n```\n\n## Quickstart\n\n```python\nfrom autodistill_vit import ViT\n\ntarget_model = ViT()\n\n# train a model from a classification folder structure\ntarget_model.train(\"./context_images_labeled/\", epochs=200)\n\n# run inference on the new model\npred = target_model.predict(\"./context_images_labeled/train/images/dog-7.jpg\", conf=0.01)\n```\n\n## License\n\nThe code in this repository is licensed under an [Apache 2.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "ViT module for use with Autodistill",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/autodistill/autodistill-vit"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0275bd2affd25601bdcce764bdfbd104feb89437c18d8f9dd924a464aa4bb633",
"md5": "5dd16e521fd83e8a2030a8af318d743f",
"sha256": "fff1adb79031b5236aa7c4895223f0434e1679db9efcb0642688253f3da3ad68"
},
"downloads": -1,
"filename": "autodistill_vit-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5dd16e521fd83e8a2030a8af318d743f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 8076,
"upload_time": "2023-06-30T08:40:42",
"upload_time_iso_8601": "2023-06-30T08:40:42.574656Z",
"url": "https://files.pythonhosted.org/packages/02/75/bd2affd25601bdcce764bdfbd104feb89437c18d8f9dd924a464aa4bb633/autodistill_vit-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "12ba706462907af88808df357a3513c674335af226d1276ec26bd56369149c24",
"md5": "71cba4f74624bfed8048e2cf7fd51350",
"sha256": "5647d625a1b9f897328a1edf77a7435630ba5bfc1b791a17947331560241f958"
},
"downloads": -1,
"filename": "autodistill-vit-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "71cba4f74624bfed8048e2cf7fd51350",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 7672,
"upload_time": "2023-06-30T08:40:43",
"upload_time_iso_8601": "2023-06-30T08:40:43.868821Z",
"url": "https://files.pythonhosted.org/packages/12/ba/706462907af88808df357a3513c674335af226d1276ec26bd56369149c24/autodistill-vit-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-30 08:40:43",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autodistill",
"github_project": "autodistill-vit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "autodistill-vit"
}