autodistill-vlpart


Nameautodistill-vlpart JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-vlpart
SummaryVLPart for use with Autodistill
upload_time2023-12-06 11:03:26
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png"
      >
    </a>
  </p>
</div>

# Autodistill VLPart Module

This repository contains the code supporting the VLPart base model for use with [Autodistill](https://github.com/autodistill/autodistill).

[VLPart](https://github.com/facebookresearch/VLPart), developed by Meta Research, is an object detection and segmentation model that works with an open vocabulary. `autodistill-vlpart` enables you to use VLPart to auto-label images for use in training a fine-tuned model. `autodistill-vlpart` supports the LVIS vocabulary.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [VLPart Autodistill documentation](https://autodistill.github.io/autodistill/base_models/vlpart/).

## Installation

To use VLPart with autodistill, you need to install the following dependency:

```bash
pip3 install autodistill-vlpart
```

## Quickstart

```python
from autodistill_vlpart import VLPart
from autodistill.detection import CaptionOntology
from autodistill.utils import plot

# define an ontology to map class names to our VLPart prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = VLPart(
    ontology=CaptionOntology(
        {
            "person": "person"
        }
    )
)

predictions = base_model.predict("./image.png")

print(predictions)

plot(
    image=cv2.imread("./image.png"),
    classes=base_model.class_names,
    detections=predictions
)

# label the images in the context_images folder
base_model.label("./context_images", extension=".jpeg")
```

## License

This project is licensed under an [MIT license](LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-vlpart",
    "name": "autodistill-vlpart",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.vom",
    "download_url": "https://files.pythonhosted.org/packages/c1/aa/cfc7af01673490c6ed3103692e7d941e44e2013d84d5e2bdb7e2439bcb96/autodistill-vlpart-0.1.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill VLPart Module\n\nThis repository contains the code supporting the VLPart base model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[VLPart](https://github.com/facebookresearch/VLPart), developed by Meta Research, is an object detection and segmentation model that works with an open vocabulary. `autodistill-vlpart` enables you to use VLPart to auto-label images for use in training a fine-tuned model. `autodistill-vlpart` supports the LVIS vocabulary.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [VLPart Autodistill documentation](https://autodistill.github.io/autodistill/base_models/vlpart/).\n\n## Installation\n\nTo use VLPart with autodistill, you need to install the following dependency:\n\n```bash\npip3 install autodistill-vlpart\n```\n\n## Quickstart\n\n```python\nfrom autodistill_vlpart import VLPart\nfrom autodistill.detection import CaptionOntology\nfrom autodistill.utils import plot\n\n# define an ontology to map class names to our VLPart prompt\n# the ontology dictionary has the format {caption: class}\n# where caption is the prompt sent to the base model, and class is the label that will\n# be saved for that caption in the generated annotations\n# then, load the model\nbase_model = VLPart(\n    ontology=CaptionOntology(\n        {\n            \"person\": \"person\"\n        }\n    )\n)\n\npredictions = base_model.predict(\"./image.png\")\n\nprint(predictions)\n\nplot(\n    image=cv2.imread(\"./image.png\"),\n    classes=base_model.class_names,\n    detections=predictions\n)\n\n# label the images in the context_images folder\nbase_model.label(\"./context_images\", extension=\".jpeg\")\n```\n\n## License\n\nThis project is licensed under an [MIT license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "VLPart for use with Autodistill",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-vlpart"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f3f8933068dd0380eb0565b409490b8f54ab4c37599dd8020c6b484368cb8042",
                "md5": "45bc44069c5fd1e21650c1ed7dce7011",
                "sha256": "8b2c5f7684d23e67d617ba1e1549816081e609ca34035d18b0ab03b91c81252a"
            },
            "downloads": -1,
            "filename": "autodistill_vlpart-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "45bc44069c5fd1e21650c1ed7dce7011",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 10610,
            "upload_time": "2023-12-06T11:03:21",
            "upload_time_iso_8601": "2023-12-06T11:03:21.267249Z",
            "url": "https://files.pythonhosted.org/packages/f3/f8/933068dd0380eb0565b409490b8f54ab4c37599dd8020c6b484368cb8042/autodistill_vlpart-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c1aacfc7af01673490c6ed3103692e7d941e44e2013d84d5e2bdb7e2439bcb96",
                "md5": "9a13e01b44fecbc77d274ba404228c64",
                "sha256": "d9c54dc970ac84ae2847c7dcf7b8ad3176e95b9430f5f39ecabda7916eae124f"
            },
            "downloads": -1,
            "filename": "autodistill-vlpart-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "9a13e01b44fecbc77d274ba404228c64",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 10655,
            "upload_time": "2023-12-06T11:03:26",
            "upload_time_iso_8601": "2023-12-06T11:03:26.817560Z",
            "url": "https://files.pythonhosted.org/packages/c1/aa/cfc7af01673490c6ed3103692e7d941e44e2013d84d5e2bdb7e2439bcb96/autodistill-vlpart-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 11:03:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-vlpart",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-vlpart"
}
        
Elapsed time: 0.50161s