<div align="center">
<p>
<a align="center" href="" target="_blank">
<img
width="850"
src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3"
>
</a>
</p>
</div>
# Autodistill YOLOv5 Module
This repository contains the code supporting the YOLOv5 target model for use with [Autodistill](https://github.com/autodistill/autodistill).
[YOLOv5](https://github.com/ultralytics/ultralytics) is an open-source computer vision model by Ultralytics, the creators of YOLOv5. You can use `autodistill` to train a YOLOv5 object detection model on a dataset of labelled images generated by the base models that `autodistill` supports.
View our [YOLOv5 Instance Segmentation](/target-models/YOLOv5-instance-segmentation/) page for information on how to train instance segmentation models.
Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).
Read the [YOLOv5 Autodistill documentation](https://autodistill.github.io/autodistill/target_models/yolov5/).
## Installation
To use the YOLOv5 target model, you will need to install the following dependency:
```bash
pip3 install autodistill-yolov5
```
## Quickstart
```python
from autodistill_YOLOv5 import YOLOv5
target_model = YOLOv5("YOLOv5n.pt")
# train a model
target_model.train("./context_images_labeled/data.yaml", epochs=200)
# run inference on the new model
pred = target_model.predict("./context_images_labeled/train/images/dog-7.jpg", conf=0.01)
```
## License
The code in this repository is licensed under an [AGPL 3.0 license](LICENSE).
## 🏆 Contributing
We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!
Raw data
{
"_id": null,
"home_page": "https://github.com/autodistill/autodistill-yolov5",
"name": "autodistill-yolov5",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Roboflow",
"author_email": "support@roboflow.com",
"download_url": "https://files.pythonhosted.org/packages/0a/8e/87293c5eb4b71a4c1026f1db5e404867b147cc5c1de7bcabeb1dd093c63b/autodistill-yolov5-0.1.2.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <p>\n <a align=\"center\" href=\"\" target=\"_blank\">\n <img\n width=\"850\"\n src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3\"\n >\n </a>\n </p>\n</div>\n\n# Autodistill YOLOv5 Module\n\nThis repository contains the code supporting the YOLOv5 target model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[YOLOv5](https://github.com/ultralytics/ultralytics) is an open-source computer vision model by Ultralytics, the creators of YOLOv5. You can use `autodistill` to train a YOLOv5 object detection model on a dataset of labelled images generated by the base models that `autodistill` supports.\n\nView our [YOLOv5 Instance Segmentation](/target-models/YOLOv5-instance-segmentation/) page for information on how to train instance segmentation models.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [YOLOv5 Autodistill documentation](https://autodistill.github.io/autodistill/target_models/yolov5/).\n\n## Installation\n\nTo use the YOLOv5 target model, you will need to install the following dependency:\n\n```bash\npip3 install autodistill-yolov5\n```\n\n## Quickstart\n\n```python\nfrom autodistill_YOLOv5 import YOLOv5\n\ntarget_model = YOLOv5(\"YOLOv5n.pt\")\n\n# train a model\ntarget_model.train(\"./context_images_labeled/data.yaml\", epochs=200)\n\n# run inference on the new model\npred = target_model.predict(\"./context_images_labeled/train/images/dog-7.jpg\", conf=0.01)\n```\n\n## License\n\nThe code in this repository is licensed under an [AGPL 3.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
"bugtrack_url": null,
"license": "",
"summary": "YOLOv5 module for use with Autodistill",
"version": "0.1.2",
"project_urls": {
"Homepage": "https://github.com/autodistill/autodistill-yolov5"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7095686accf72e93c0b0af376824ecf818fc97d77d3934830f1458e034c0386e",
"md5": "2e48441004fbd156d5006b3e4d2cd816",
"sha256": "c6cbd2ce26aeef3642e7619ccf03174c7ac782c49aa60e1060d64b7f7b2219ce"
},
"downloads": -1,
"filename": "autodistill_yolov5-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2e48441004fbd156d5006b3e4d2cd816",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 15412,
"upload_time": "2023-06-30T10:05:21",
"upload_time_iso_8601": "2023-06-30T10:05:21.847106Z",
"url": "https://files.pythonhosted.org/packages/70/95/686accf72e93c0b0af376824ecf818fc97d77d3934830f1458e034c0386e/autodistill_yolov5-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0a8e87293c5eb4b71a4c1026f1db5e404867b147cc5c1de7bcabeb1dd093c63b",
"md5": "25925a73bf59437b56916df49451e075",
"sha256": "f2d62ce80225456a62c15c87863c70bb394f7b9fa16d3693c21f4609534be0b7"
},
"downloads": -1,
"filename": "autodistill-yolov5-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "25925a73bf59437b56916df49451e075",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 14893,
"upload_time": "2023-06-30T10:05:23",
"upload_time_iso_8601": "2023-06-30T10:05:23.205824Z",
"url": "https://files.pythonhosted.org/packages/0a/8e/87293c5eb4b71a4c1026f1db5e404867b147cc5c1de7bcabeb1dd093c63b/autodistill-yolov5-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-30 10:05:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autodistill",
"github_project": "autodistill-yolov5",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "autodistill-yolov5"
}