autodistill-yolov5


Nameautodistill-yolov5 JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/autodistill/autodistill-yolov5
SummaryYOLOv5 module for use with Autodistill
upload_time2023-06-30 10:05:23
maintainer
docs_urlNone
authorRoboflow
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a align="center" href="" target="_blank">
      <img
        width="850"
        src="https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3"
      >
    </a>
  </p>
</div>

# Autodistill YOLOv5 Module

This repository contains the code supporting the YOLOv5 target model for use with [Autodistill](https://github.com/autodistill/autodistill).

[YOLOv5](https://github.com/ultralytics/ultralytics) is an open-source computer vision model by Ultralytics, the creators of YOLOv5. You can use `autodistill` to train a YOLOv5 object detection model on a dataset of labelled images generated by the base models that `autodistill` supports.

View our [YOLOv5 Instance Segmentation](/target-models/YOLOv5-instance-segmentation/) page for information on how to train instance segmentation models.

Read the full [Autodistill documentation](https://autodistill.github.io/autodistill/).

Read the [YOLOv5 Autodistill documentation](https://autodistill.github.io/autodistill/target_models/yolov5/).

## Installation

To use the YOLOv5 target model, you will need to install the following dependency:

```bash
pip3 install autodistill-yolov5
```

## Quickstart

```python
from autodistill_YOLOv5 import YOLOv5

target_model = YOLOv5("YOLOv5n.pt")

# train a model
target_model.train("./context_images_labeled/data.yaml", epochs=200)

# run inference on the new model
pred = target_model.predict("./context_images_labeled/train/images/dog-7.jpg", conf=0.01)
```

## License

The code in this repository is licensed under an [AGPL 3.0 license](LICENSE).

## 🏆 Contributing

We love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you 🙏 to all our contributors!

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autodistill/autodistill-yolov5",
    "name": "autodistill-yolov5",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Roboflow",
    "author_email": "support@roboflow.com",
    "download_url": "https://files.pythonhosted.org/packages/0a/8e/87293c5eb4b71a4c1026f1db5e404867b147cc5c1de7bcabeb1dd093c63b/autodistill-yolov5-0.1.2.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a align=\"center\" href=\"\" target=\"_blank\">\n      <img\n        width=\"850\"\n        src=\"https://media.roboflow.com/open-source/autodistill/autodistill-banner.png?3\"\n      >\n    </a>\n  </p>\n</div>\n\n# Autodistill YOLOv5 Module\n\nThis repository contains the code supporting the YOLOv5 target model for use with [Autodistill](https://github.com/autodistill/autodistill).\n\n[YOLOv5](https://github.com/ultralytics/ultralytics) is an open-source computer vision model by Ultralytics, the creators of YOLOv5. You can use `autodistill` to train a YOLOv5 object detection model on a dataset of labelled images generated by the base models that `autodistill` supports.\n\nView our [YOLOv5 Instance Segmentation](/target-models/YOLOv5-instance-segmentation/) page for information on how to train instance segmentation models.\n\nRead the full [Autodistill documentation](https://autodistill.github.io/autodistill/).\n\nRead the [YOLOv5 Autodistill documentation](https://autodistill.github.io/autodistill/target_models/yolov5/).\n\n## Installation\n\nTo use the YOLOv5 target model, you will need to install the following dependency:\n\n```bash\npip3 install autodistill-yolov5\n```\n\n## Quickstart\n\n```python\nfrom autodistill_YOLOv5 import YOLOv5\n\ntarget_model = YOLOv5(\"YOLOv5n.pt\")\n\n# train a model\ntarget_model.train(\"./context_images_labeled/data.yaml\", epochs=200)\n\n# run inference on the new model\npred = target_model.predict(\"./context_images_labeled/train/images/dog-7.jpg\", conf=0.01)\n```\n\n## License\n\nThe code in this repository is licensed under an [AGPL 3.0 license](LICENSE).\n\n## \ud83c\udfc6 Contributing\n\nWe love your input! Please see the core Autodistill [contributing guide](https://github.com/autodistill/autodistill/blob/main/CONTRIBUTING.md) to get started. Thank you \ud83d\ude4f to all our contributors!\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "YOLOv5 module for use with Autodistill",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/autodistill/autodistill-yolov5"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7095686accf72e93c0b0af376824ecf818fc97d77d3934830f1458e034c0386e",
                "md5": "2e48441004fbd156d5006b3e4d2cd816",
                "sha256": "c6cbd2ce26aeef3642e7619ccf03174c7ac782c49aa60e1060d64b7f7b2219ce"
            },
            "downloads": -1,
            "filename": "autodistill_yolov5-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2e48441004fbd156d5006b3e4d2cd816",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 15412,
            "upload_time": "2023-06-30T10:05:21",
            "upload_time_iso_8601": "2023-06-30T10:05:21.847106Z",
            "url": "https://files.pythonhosted.org/packages/70/95/686accf72e93c0b0af376824ecf818fc97d77d3934830f1458e034c0386e/autodistill_yolov5-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0a8e87293c5eb4b71a4c1026f1db5e404867b147cc5c1de7bcabeb1dd093c63b",
                "md5": "25925a73bf59437b56916df49451e075",
                "sha256": "f2d62ce80225456a62c15c87863c70bb394f7b9fa16d3693c21f4609534be0b7"
            },
            "downloads": -1,
            "filename": "autodistill-yolov5-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "25925a73bf59437b56916df49451e075",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 14893,
            "upload_time": "2023-06-30T10:05:23",
            "upload_time_iso_8601": "2023-06-30T10:05:23.205824Z",
            "url": "https://files.pythonhosted.org/packages/0a/8e/87293c5eb4b71a4c1026f1db5e404867b147cc5c1de7bcabeb1dd093c63b/autodistill-yolov5-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-30 10:05:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autodistill",
    "github_project": "autodistill-yolov5",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autodistill-yolov5"
}
        
Elapsed time: 0.88954s