autoemcee


Nameautoemcee JSON
Version 0.4.1 PyPI version JSON
download
home_pagehttps://github.com/JohannesBuchner/autoemcee
SummaryRun affine-invariant sampler in automated fashion until convergence.
upload_time2022-12-12 07:15:13
maintainer
docs_urlNone
authorJohannes Buchner
requires_python>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*
licenseGNU General Public License v3
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            =========
autoemcee
=========

Runs MCMC automatically to convergence.

About
-----

Runs a family of Markov Chain Monte Carlo ensemble samplers (Affine-Invariant or Slice Sampler)
with gradually increasing number of samples until they converge.

Convergence is tested within each ensemble and across ensembles,
see `MCMC ensemble convergence test <mcmc-ensemble-convergence.html>`_
for details.

Supports parallelisation with MPI. No modifications to your code is needed, 
just run your script with mpiexec.

This package is built on top of emcee, zeus, anviz and mpi4py.

You can help by testing autoemcee and reporting issues. Code contributions are welcome.
See the `Contributing page <https://johannesbuchner.github.io/autoemcee/contributing.html>`_.

.. image:: https://img.shields.io/pypi/v/autoemcee.svg
        :target: https://pypi.python.org/pypi/autoemcee

.. image:: https://github.com/JohannesBuchner/autoemcee/actions/workflows/tests.yml/badge.svg
        :target: https://github.com/JohannesBuchner/autoemcee/actions/workflows/tests.yml

.. image:: https://coveralls.io/repos/github/JohannesBuchner/autoemcee/badge.svg?branch=master
        :target: https://coveralls.io/github/JohannesBuchner/autoemcee?branch=master

.. image:: https://img.shields.io/badge/docs-published-ok.svg
        :target: https://johannesbuchner.github.io/autoemcee/
        :alt: Documentation Status

Features
---------

* Pythonic. pip installable.
* Easy to program for: Sanity checks with meaningful errors
* both emcee and zeus are supported
* MPI support for parallel high-performance computing

Usage
^^^^^

Read the full documentation at:

https://johannesbuchner.github.io/autoemcee/


For parallelisation, use::

        mpiexec -np 4 python3 yourscript.py


Licence
^^^^^^^

GPLv3 (see LICENCE file). If you require another license, please contact me.

Icon made by `Vecteezy <https://www.flaticon.com/authors/smashicons>`_ from `Flaticon <https://www.flaticon.com/>`_ .


Other projects
^^^^^^^^^^^^^^

See also:

 * UltraNest: https://johannesbuchner.github.io/UltraNest/
 * snowline: https://johannesbuchner.github.io/snowline/


==============
Release Notes
==============

0.1.0 (2020-03-07)
------------------

* First version




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JohannesBuchner/autoemcee",
    "name": "autoemcee",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
    "maintainer_email": "",
    "keywords": "",
    "author": "Johannes Buchner",
    "author_email": "johannes.buchner.acad@gmx.com",
    "download_url": "https://files.pythonhosted.org/packages/8e/50/e99089c782deca1f74d34a9ab4f33d385c0859c79e61ac04b9597b0d5aff/autoemcee-0.4.1.tar.gz",
    "platform": null,
    "description": "=========\nautoemcee\n=========\n\nRuns MCMC automatically to convergence.\n\nAbout\n-----\n\nRuns a family of Markov Chain Monte Carlo ensemble samplers (Affine-Invariant or Slice Sampler)\nwith gradually increasing number of samples until they converge.\n\nConvergence is tested within each ensemble and across ensembles,\nsee `MCMC ensemble convergence test <mcmc-ensemble-convergence.html>`_\nfor details.\n\nSupports parallelisation with MPI. No modifications to your code is needed, \njust run your script with mpiexec.\n\nThis package is built on top of emcee, zeus, anviz and mpi4py.\n\nYou can help by testing autoemcee and reporting issues. Code contributions are welcome.\nSee the `Contributing page <https://johannesbuchner.github.io/autoemcee/contributing.html>`_.\n\n.. image:: https://img.shields.io/pypi/v/autoemcee.svg\n        :target: https://pypi.python.org/pypi/autoemcee\n\n.. image:: https://github.com/JohannesBuchner/autoemcee/actions/workflows/tests.yml/badge.svg\n        :target: https://github.com/JohannesBuchner/autoemcee/actions/workflows/tests.yml\n\n.. image:: https://coveralls.io/repos/github/JohannesBuchner/autoemcee/badge.svg?branch=master\n        :target: https://coveralls.io/github/JohannesBuchner/autoemcee?branch=master\n\n.. image:: https://img.shields.io/badge/docs-published-ok.svg\n        :target: https://johannesbuchner.github.io/autoemcee/\n        :alt: Documentation Status\n\nFeatures\n---------\n\n* Pythonic. pip installable.\n* Easy to program for: Sanity checks with meaningful errors\n* both emcee and zeus are supported\n* MPI support for parallel high-performance computing\n\nUsage\n^^^^^\n\nRead the full documentation at:\n\nhttps://johannesbuchner.github.io/autoemcee/\n\n\nFor parallelisation, use::\n\n        mpiexec -np 4 python3 yourscript.py\n\n\nLicence\n^^^^^^^\n\nGPLv3 (see LICENCE file). If you require another license, please contact me.\n\nIcon made by `Vecteezy <https://www.flaticon.com/authors/smashicons>`_ from `Flaticon <https://www.flaticon.com/>`_ .\n\n\nOther projects\n^^^^^^^^^^^^^^\n\nSee also:\n\n * UltraNest: https://johannesbuchner.github.io/UltraNest/\n * snowline: https://johannesbuchner.github.io/snowline/\n\n\n==============\nRelease Notes\n==============\n\n0.1.0 (2020-03-07)\n------------------\n\n* First version\n\n\n\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3",
    "summary": "Run affine-invariant sampler in automated fashion until convergence.",
    "version": "0.4.1",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "70c967a0c8ec5a6d071b3872dcf2fc9e",
                "sha256": "4302f9ae18f6070a2b99889a3564e33aa44dc837f400c3ab388bb75d93d285c7"
            },
            "downloads": -1,
            "filename": "autoemcee-0.4.1.tar.gz",
            "has_sig": true,
            "md5_digest": "70c967a0c8ec5a6d071b3872dcf2fc9e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
            "size": 177068,
            "upload_time": "2022-12-12T07:15:13",
            "upload_time_iso_8601": "2022-12-12T07:15:13.972647Z",
            "url": "https://files.pythonhosted.org/packages/8e/50/e99089c782deca1f74d34a9ab4f33d385c0859c79e61ac04b9597b0d5aff/autoemcee-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-12 07:15:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "JohannesBuchner",
    "github_project": "autoemcee",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": true,
    "circle": true,
    "tox": true,
    "lcname": "autoemcee"
}
        
Elapsed time: 0.02522s