autoflows


Nameautoflows JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/unionai-oss/autoflows/
SummaryAutomated Flyte workflows, powered by GPTs.
upload_time2023-12-05 20:29:46
maintainer
docs_urlNone
authorunionai-oss
requires_python>3.7
licenseApache
keywords machine-learning artificial-intelligence orchestration
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<img src="static/logo.png" width="250px"></img>

<h1>Autoflows</h1>

<i>Automated Flyte Workflows using LLMs</i>
</div>

The `autoflows` package allows you to run Flyte workflows that are powered by
LLMs. These workflows use LLMs to determine which task to run in a suite of
user-defined, trusted Flyte tasks.

## Installation

```bash
pip install autoflows
```

## Usage

First we can define some Flyte tasks as usual:

```python
# example.py

from flytekit import task
from autoflows import autoflow


image_spec = ImageSpec(
    "auto-workflows",
    registry="ghcr.io/unionai-oss",
    requirements="requirements.txt",
    python_version="3.10",
)


@task(container_image=image_spec)
def add_numbers(x: float, y: float) -> FlyteFile: ...


@task(container_image=image_spec)
def concat_strings(strings: List[str]) -> FlyteFile: ...


@task(container_image=image_spec)
def train_classifier(data: List[dict], target_column: str) -> FlyteFile:
    ...
```

Then, in the same file, we define a `FlyteRemote` object that we want to use to
run our autoflow.

```python
# example.py

remote = FlyteRemote(
    config=Config(
        platform=PlatformConfig(
            endpoint="<my_endpoitn>",
            client_id="<my_client_id>",
        ),
    ),
    default_project="flytesnacks",
    default_domain="development",
)
```

Finally, we define the `autoflow` function:

```python
# example.py

@autoflow(
    tasks=[add_numbers, concat_strings, train_classifier],
    model="gpt-3.5-turbo-1106",
    remote=remote,
    openai_secret_group="<OPENAI_API_SECRET_GROUP>",
    openai_secret_key="<OPENAI_API_SECRET_KEY>",
    client_secret_group="<CLIENT_SECRET_GROUP>",
    client_secret_key="<CLIENT_SECRET_KEY>",
    container_image=image_spec,
)
async def main(prompt: str, inputs: dict) -> FlyteFile:
    """You are a helpful bot that picks functions based on a prompt and a set of inputs.

    What tool should I use for completing the task '{prompt}' using the following inputs?
    {inputs}
    """

```

## Running on Flyte or Union

Then, you can register the workflow along with all of the tasks:

```bash
pyflyte --config config.yaml register example.py
```

Where `config.yaml` is the Flyte configuration file pointing to your Flyte or
Union cluster.

Finally, you can run the workflow, and let the `autoflow` function decide which
task to run based on the prompt and inputs. For example, to add two numbers, you
would do:

```bash
pyflyte --config config.yaml run example.py main \
    --prompt "Add these two numbers" \
    --inputs '{"x": 1, "y": 2}'
```

To concatenate two strings, you would do:

```bash
pyflyte run \
    test_auto_workflow.py auto_wf \
    --prompt "Combine these two strings together" \
    --inputs '{"strings": ["hello", " ", "world"]}'
```

And to train a classifier based on data:

```bash
pyflyte run \
    test_auto_workflow.py auto_wf \
    --prompt "Train a classifier on this small dataset" \
    --inputs "{\"target_column\": \"y\", \"training_data\": $(cat data.json)}"
```

Where `data.json` contains json objects that looks something like:

```
[
    {"x": 5, "y": 10},
    {"x": 3, "y": 5},
    {"x": 10, "y": 19},
]
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/unionai-oss/autoflows/",
    "name": "autoflows",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">3.7",
    "maintainer_email": "",
    "keywords": "machine-learning,artificial-intelligence,orchestration",
    "author": "unionai-oss",
    "author_email": "info@union.ai",
    "download_url": "https://files.pythonhosted.org/packages/12/fa/4349928c9d5fc8c19004fe19cf78a2bc524886a865dcce8e8ac4e0e7e07d/autoflows-0.0.1.tar.gz",
    "platform": "any",
    "description": "<div align=\"center\">\n<img src=\"static/logo.png\" width=\"250px\"></img>\n\n<h1>Autoflows</h1>\n\n<i>Automated Flyte Workflows using LLMs</i>\n</div>\n\nThe `autoflows` package allows you to run Flyte workflows that are powered by\nLLMs. These workflows use LLMs to determine which task to run in a suite of\nuser-defined, trusted Flyte tasks.\n\n## Installation\n\n```bash\npip install autoflows\n```\n\n## Usage\n\nFirst we can define some Flyte tasks as usual:\n\n```python\n# example.py\n\nfrom flytekit import task\nfrom autoflows import autoflow\n\n\nimage_spec = ImageSpec(\n    \"auto-workflows\",\n    registry=\"ghcr.io/unionai-oss\",\n    requirements=\"requirements.txt\",\n    python_version=\"3.10\",\n)\n\n\n@task(container_image=image_spec)\ndef add_numbers(x: float, y: float) -> FlyteFile: ...\n\n\n@task(container_image=image_spec)\ndef concat_strings(strings: List[str]) -> FlyteFile: ...\n\n\n@task(container_image=image_spec)\ndef train_classifier(data: List[dict], target_column: str) -> FlyteFile:\n    ...\n```\n\nThen, in the same file, we define a `FlyteRemote` object that we want to use to\nrun our autoflow.\n\n```python\n# example.py\n\nremote = FlyteRemote(\n    config=Config(\n        platform=PlatformConfig(\n            endpoint=\"<my_endpoitn>\",\n            client_id=\"<my_client_id>\",\n        ),\n    ),\n    default_project=\"flytesnacks\",\n    default_domain=\"development\",\n)\n```\n\nFinally, we define the `autoflow` function:\n\n```python\n# example.py\n\n@autoflow(\n    tasks=[add_numbers, concat_strings, train_classifier],\n    model=\"gpt-3.5-turbo-1106\",\n    remote=remote,\n    openai_secret_group=\"<OPENAI_API_SECRET_GROUP>\",\n    openai_secret_key=\"<OPENAI_API_SECRET_KEY>\",\n    client_secret_group=\"<CLIENT_SECRET_GROUP>\",\n    client_secret_key=\"<CLIENT_SECRET_KEY>\",\n    container_image=image_spec,\n)\nasync def main(prompt: str, inputs: dict) -> FlyteFile:\n    \"\"\"You are a helpful bot that picks functions based on a prompt and a set of inputs.\n\n    What tool should I use for completing the task '{prompt}' using the following inputs?\n    {inputs}\n    \"\"\"\n\n```\n\n## Running on Flyte or Union\n\nThen, you can register the workflow along with all of the tasks:\n\n```bash\npyflyte --config config.yaml register example.py\n```\n\nWhere `config.yaml` is the Flyte configuration file pointing to your Flyte or\nUnion cluster.\n\nFinally, you can run the workflow, and let the `autoflow` function decide which\ntask to run based on the prompt and inputs. For example, to add two numbers, you\nwould do:\n\n```bash\npyflyte --config config.yaml run example.py main \\\n    --prompt \"Add these two numbers\" \\\n    --inputs '{\"x\": 1, \"y\": 2}'\n```\n\nTo concatenate two strings, you would do:\n\n```bash\npyflyte run \\\n    test_auto_workflow.py auto_wf \\\n    --prompt \"Combine these two strings together\" \\\n    --inputs '{\"strings\": [\"hello\", \" \", \"world\"]}'\n```\n\nAnd to train a classifier based on data:\n\n```bash\npyflyte run \\\n    test_auto_workflow.py auto_wf \\\n    --prompt \"Train a classifier on this small dataset\" \\\n    --inputs \"{\\\"target_column\\\": \\\"y\\\", \\\"training_data\\\": $(cat data.json)}\"\n```\n\nWhere `data.json` contains json objects that looks something like:\n\n```\n[\n    {\"x\": 5, \"y\": 10},\n    {\"x\": 3, \"y\": 5},\n    {\"x\": 10, \"y\": 19},\n]\n```\n",
    "bugtrack_url": null,
    "license": "Apache",
    "summary": "Automated Flyte workflows, powered by GPTs.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/unionai-oss/autoflows/",
        "Issue Tracker": "https://github.com/unionai-oss/autoflows/issues",
        "Source Code": "https://github.com/unionai-oss/autoflows/"
    },
    "split_keywords": [
        "machine-learning",
        "artificial-intelligence",
        "orchestration"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c62f9ff7b662adc2c54e47d1bd4e68becfb01eaab894bf6251924c71ce5424f8",
                "md5": "f0343b8a52d9e005833b85a784ec2c83",
                "sha256": "994c450749d98d98ac456e72cd645fd99e672bdb8f43995bc4a0d936f5535ec6"
            },
            "downloads": -1,
            "filename": "autoflows-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f0343b8a52d9e005833b85a784ec2c83",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">3.7",
            "size": 12872,
            "upload_time": "2023-12-05T20:29:43",
            "upload_time_iso_8601": "2023-12-05T20:29:43.954429Z",
            "url": "https://files.pythonhosted.org/packages/c6/2f/9ff7b662adc2c54e47d1bd4e68becfb01eaab894bf6251924c71ce5424f8/autoflows-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "12fa4349928c9d5fc8c19004fe19cf78a2bc524886a865dcce8e8ac4e0e7e07d",
                "md5": "ec7cd747d13833542a72d9694ed3efc3",
                "sha256": "253c149e08358d44a912c23c8c72c5b7bc257e8823383bb713b9de04d52d9111"
            },
            "downloads": -1,
            "filename": "autoflows-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "ec7cd747d13833542a72d9694ed3efc3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">3.7",
            "size": 9484,
            "upload_time": "2023-12-05T20:29:46",
            "upload_time_iso_8601": "2023-12-05T20:29:46.037057Z",
            "url": "https://files.pythonhosted.org/packages/12/fa/4349928c9d5fc8c19004fe19cf78a2bc524886a865dcce8e8ac4e0e7e07d/autoflows-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-05 20:29:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "unionai-oss",
    "github_project": "autoflows",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "autoflows"
}
        
Elapsed time: 0.31345s