autogen-vertexai-memory


Nameautogen-vertexai-memory JSON
Version 0.1.14 PyPI version JSON
download
home_pagehttps://github.com/thelaycon/autogen-vertexai-memory
SummaryVertexAI Memory integration for Autogen agents
upload_time2025-10-21 05:18:19
maintainerNone
docs_urlNone
authorthelaycon
requires_python<4.0,>=3.10
licenseMIT
keywords autogen vertexai memory ai agents
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # autogen-vertexai-memory

VertexAI Memory integration for Autogen agents. Store and retrieve agent memories using Google Cloud's VertexAI Memory service with semantic search capabilities.

## Features

- 🧠 **Persistent Memory Storage** - Store agent memories in Google Cloud VertexAI
- 🔍 **Semantic Search** - Find relevant memories using natural language queries
- 🔄 **Automatic Context Updates** - Seamlessly inject memories into chat contexts
- ⚡ **Async/Await Support** - Full async API compatible with Autogen's runtime
- 🎯 **User-Scoped Isolation** - Multi-tenant memory management
- 🛠️ **Tool Integration** - Ready-to-use tools for agent workflows

## Installation

```bash
pip install autogen-vertexai-memory
```

## Prerequisites

1. **Google Cloud Project** with VertexAI API enabled
2. **Authentication** configured (Application Default Credentials)
3. **VertexAI Memory Resource** created in your project

```bash
# Set up authentication
gcloud auth application-default login

# Enable VertexAI API
gcloud services enable aiplatform.googleapis.com
```

## Quick Start

### Basic Memory Usage

```python
from autogen_vertexai_memory import VertexaiMemory, VertexaiMemoryConfig
from autogen_core.memory import MemoryContent, MemoryMimeType

# Configure memory
config = VertexaiMemoryConfig(
    api_resource_name="projects/my-project/locations/us-central1/......./",
    project_id="my-project",
    location="us-central1",
    user_id="user123"
)

memory = VertexaiMemory(config=config)

# Store a memory
await memory.add(
    content=MemoryContent(
        content="User prefers concise responses and uses Python",
        mime_type=MemoryMimeType.TEXT
    )
)

# Semantic search for relevant memories
results = await memory.query(query="programming preferences")
for mem in results.results:
    print(mem.content)
# Output: User prefers concise responses and uses Python

# Retrieve all memories
all_memories = await memory.query(query="")
```

### Using with Autogen Agents

```python
from autogen_core.model_context import ChatCompletionContext
from autogen_core.models import UserMessage

# Create chat context
context = ChatCompletionContext()

# Add user message
await context.add_message(
    UserMessage(content="What programming language should I use?")
)

# Inject relevant memories into context
result = await memory.update_context(context)
print(f"Added {len(result.memories.results)} memories to context")

# Now the agent has access to stored preferences
```

### Environment Variables

You can also configure using environment variables:

```bash
export VERTEX_PROJECT_ID="my-project"
export VERTEX_LOCATION="us-central1"
export VERTEX_USER_ID="user123"
export VERTEX_API_RESOURCE_NAME="projects/my-project/locations/us-central1/memories/agent-memory"
```

```python
# Auto-loads from environment
config = VertexaiMemoryConfig()
memory = VertexaiMemory(config=config)
```

## Memory Tools for Agents

Integrate memory capabilities directly into your Autogen agents:

```python
from autogen_agentchat.agents import AssistantAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_vertexai_memory.tools import (
    SearchVertexaiMemoryTool,
    UpdateVertexaiMemoryTool,
    VertexaiMemoryToolConfig
)

# Configure memory tools
memory_config = VertexaiMemoryToolConfig(
    project_id="my-project",
    location="us-central1",
    user_id="user123",
    api_resource_name="projects/my-project/locations/us-central1/memories/agent-memory"
)

# Create memory tools
search_tool = SearchVertexaiMemoryTool(config=memory_config)
update_tool = UpdateVertexaiMemoryTool(config=memory_config)

# Create agent with memory tools
agent = AssistantAgent(
    name="memory_assistant",
    model_client=OpenAIChatCompletionClient(model="gpt-4"),
    tools=[search_tool, update_tool],
    system_message="""You are a helpful assistant with memory capabilities.
    
    Use search_vertexai_memory_tool to retrieve relevant information about the user.
    Use update_vertexai_memory_tool to store important facts you learn during conversations.
    """
)

# Now the agent can search and store memories automatically!
# Example conversation:
# User: "I prefer Python for data analysis"
# Agent uses update_vertexai_memory_tool to store this preference
# 
# Later...
# User: "What language should I use for my data project?"
# Agent uses search_vertexai_memory_tool, retrieves the preference, and responds accordingly
```

## API Reference

### VertexaiMemoryConfig

Configuration model for VertexAI Memory.

```python
VertexaiMemoryConfig(
    api_resource_name: str,  # Full resource name: "projects/{project}/locations/{location}/memories/{memory}"
    project_id: str,         # Google Cloud project ID
    location: str,           # GCP region (e.g., "us-central1", "europe-west1")
    user_id: str            # Unique user identifier for memory isolation
)
```

**Environment Variables:**
- `VERTEX_API_RESOURCE_NAME`
- `VERTEX_PROJECT_ID`
- `VERTEX_LOCATION`
- `VERTEX_USER_ID`

### VertexaiMemory

Main memory interface implementing Autogen's Memory protocol.

```python
VertexaiMemory(
    config: Optional[VertexaiMemoryConfig] = None,
    client: Optional[Client] = None
)
```

**Methods:**

#### `add(content, cancellation_token=None)`
Store a new memory.

```python
await memory.add(
    content=MemoryContent(
        content="Important fact to remember",
        mime_type=MemoryMimeType.TEXT
    )
)
```

#### `query(query="", cancellation_token=None, **kwargs)`
Search memories or retrieve all.

```python
# Semantic search (top 3 results)
results = await memory.query(query="user preferences")

# Get all memories
all_results = await memory.query(query="")
```

**Returns:** `MemoryQueryResult` with list of `MemoryContent` objects

#### `update_context(model_context)`
Inject memories into chat context as system message.

```python
context = ChatCompletionContext()
result = await memory.update_context(context)
# Context now includes relevant memories
```

**Returns:** `UpdateContextResult` with retrieved memories

#### `clear()`
⚠️ **Permanently delete all memories** (irreversible).

```python
await memory.clear()  # Use with caution!
```

#### `close()`
Cleanup resources (currently a no-op but provided for protocol compliance).

```python
await memory.close()
```

### Memory Tools

#### VertexaiMemoryToolConfig

Shared configuration for memory tools.

```python
VertexaiMemoryToolConfig(
    project_id: str,
    location: str,
    user_id: str,
    api_resource_name: str
)
```

#### SearchVertexaiMemoryTool

Tool for semantic memory search. Automatically used by agents to retrieve relevant memories.

```python
SearchVertexaiMemoryTool(config: Optional[VertexaiMemoryToolConfig] = None, **kwargs)
```

**Tool Name:** `search_vertexai_memory_tool`  
**Description:** Perform a search with given parameters using vertexai memory bank  
**Parameters:**
- `query` (str): Semantic search query to retrieve information about user
- `top_k` (int, default=5): Maximum number of relevant memories to retrieve

**Returns:** List of matching memory strings

#### UpdateVertexaiMemoryTool

Tool for storing new memories. Automatically used by agents to save important information.

```python
UpdateVertexaiMemoryTool(config: Optional[VertexaiMemoryToolConfig] = None, **kwargs)
```

**Tool Name:** `update_vertexai_memory_tool`  
**Description:** Store a new memory fact in the VertexAI memory bank for the user  
**Parameters:**
- `content` (str): The memory content to store as a fact in the memory bank

**Returns:** Success status and message

## Advanced Examples

### Custom Client Configuration

```python
from vertexai import Client

# Create custom client with specific settings
client = Client(
    project="my-project",
    location="us-central1"
)

memory = VertexaiMemory(config=config, client=client)
```

### Async Context Manager

```python
async with VertexaiMemory(config=config) as memory:
    await memory.add(content)
    results = await memory.query("query")
# Automatic cleanup
```

### Multi-User Isolation

```python
# User 1's memories
user1_config = VertexaiMemoryConfig(
    api_resource_name="projects/my-project/locations/us-central1/memories/app-memory",
    project_id="my-project",
    location="us-central1",
    user_id="user1"
)
user1_memory = VertexaiMemory(config=user1_config)

# User 2's memories (isolated from User 1)
user2_config = VertexaiMemoryConfig(
    api_resource_name="projects/my-project/locations/us-central1/memories/app-memory",
    project_id="my-project",
    location="us-central1",
    user_id="user2"
)
user2_memory = VertexaiMemory(config=user2_config)
```

### Sharing Config Across Tools

```python
from autogen_agentchat.agents import AssistantAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_vertexai_memory.tools import (
    SearchVertexaiMemoryTool,
    UpdateVertexaiMemoryTool,
    VertexaiMemoryToolConfig
)

# Create config once
config = VertexaiMemoryToolConfig(
    project_id="my-project",
    location="us-central1",
    user_id="user123",
    api_resource_name="projects/my-project/locations/us-central1/memories/agent-memory"
)

# Share across multiple tools
search_tool = SearchVertexaiMemoryTool(config=config)
update_tool = UpdateVertexaiMemoryTool(config=config)

# Use in multiple agents
agent1 = AssistantAgent(
    name="agent1",
    model_client=OpenAIChatCompletionClient(model="gpt-4"),
    tools=[search_tool, update_tool]
)

agent2 = AssistantAgent(
    name="agent2",
    model_client=OpenAIChatCompletionClient(model="gpt-4"),
    tools=[search_tool]  # This agent can only search, not update
)

# Both agents use the same VertexAI client and configuration
```

## Development

### Setup

```bash
# Clone repository
git clone https://github.com/thelaycon/autogen-vertexai-memory.git
cd autogen-vertexai-memory

# Install dependencies with Poetry
poetry install

# Run tests
poetry run pytest

# Run tests with coverage
poetry run pytest --cov=autogen_vertexai_memory --cov-report=html

# Type checking
poetry run mypy src/autogen_vertexai_memory

# Linting
poetry run ruff check src/
```

### Project Structure

```
autogen-vertexai-memory/
├── src/
│   └── autogen_vertexai_memory/
│       ├── __init__.py
│       ├── memory/
│       │   ├── __init__.py
│       │   └── _vertexai_memory.py    # Main memory implementation
│       └── tools/
│           ├── __init__.py
│           └── _vertexai_memory_tools.py  # Tool implementations
├── tests/
│   ├── conftest.py
│   └── test_vertexai_memory.py
├── pyproject.toml
└── README.md
```

### Running Tests

The test suite uses mocking to avoid real VertexAI API calls:

```bash
# Run all tests
poetry run pytest

# Run with verbose output
poetry run pytest -v

# Run specific test class
poetry run pytest tests/test_vertexai_memory.py::TestVertexaiMemoryConfig

# Run with coverage report
poetry run pytest --cov=autogen_vertexai_memory --cov-report=term-missing
```

## Troubleshooting

### Authentication Issues

```python
# Verify authentication
gcloud auth application-default print-access-token

# Set explicit credentials
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account-key.json"
```

### Memory Resource Not Found

Ensure your `api_resource_name` is correct:
```python
# Format: projects/{project_id}/locations/{location}/memories/{memory_id}
api_resource_name = "projects/my-project/locations/us-central1/memories/my-memory"
```

### Empty Query Results

```python
# Check if memories exist
all_memories = await memory.query(query="")
print(f"Total memories: {len(all_memories.results)}")

# Verify user_id matches
print(f"Using user_id: {memory.user_id}")
```

## Contributing

Contributions are welcome! Please follow these steps:

1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Make your changes with tests
4. Run tests (`poetry run pytest`)
5. Commit your changes (`git commit -m 'Add amazing feature'`)
6. Push to the branch (`git push origin feature/amazing-feature`)
7. Open a Pull Request

### Development Guidelines

- Write tests for new features
- Follow existing code style
- Update documentation for API changes
- Ensure all tests pass before submitting PR

## License

MIT License - see [LICENSE](LICENSE) file for details.

## Support

- 📫 [GitHub Issues](https://github.com/thelaycon/autogen-vertexai-memory/issues) - Bug reports and feature requests
- 💬 [GitHub Discussions](https://github.com/thelaycon/autogen-vertexai-memory/discussions) - Questions and community support
- 📚 [VertexAI Documentation](https://cloud.google.com/vertex-ai/docs) - Official VertexAI docs
- 🤖 [Autogen Documentation](https://microsoft.github.io/autogen/) - Autogen framework docs

## Acknowledgments

- Built for the [Autogen](https://github.com/microsoft/autogen) framework
- Powered by [Google Cloud VertexAI](https://cloud.google.com/vertex-ai)

---

Made with ❤️ for the Autogen community
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/thelaycon/autogen-vertexai-memory",
    "name": "autogen-vertexai-memory",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "autogen, vertexai, memory, ai, agents",
    "author": "thelaycon",
    "author_email": "tobitobitobiwhy@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/76/c4/dae12c043e1ac3d5c6fae84a062b1bb411fec3bedf396e8416b345159f5c/autogen_vertexai_memory-0.1.14.tar.gz",
    "platform": null,
    "description": "# autogen-vertexai-memory\n\nVertexAI Memory integration for Autogen agents. Store and retrieve agent memories using Google Cloud's VertexAI Memory service with semantic search capabilities.\n\n## Features\n\n- \ud83e\udde0 **Persistent Memory Storage** - Store agent memories in Google Cloud VertexAI\n- \ud83d\udd0d **Semantic Search** - Find relevant memories using natural language queries\n- \ud83d\udd04 **Automatic Context Updates** - Seamlessly inject memories into chat contexts\n- \u26a1 **Async/Await Support** - Full async API compatible with Autogen's runtime\n- \ud83c\udfaf **User-Scoped Isolation** - Multi-tenant memory management\n- \ud83d\udee0\ufe0f **Tool Integration** - Ready-to-use tools for agent workflows\n\n## Installation\n\n```bash\npip install autogen-vertexai-memory\n```\n\n## Prerequisites\n\n1. **Google Cloud Project** with VertexAI API enabled\n2. **Authentication** configured (Application Default Credentials)\n3. **VertexAI Memory Resource** created in your project\n\n```bash\n# Set up authentication\ngcloud auth application-default login\n\n# Enable VertexAI API\ngcloud services enable aiplatform.googleapis.com\n```\n\n## Quick Start\n\n### Basic Memory Usage\n\n```python\nfrom autogen_vertexai_memory import VertexaiMemory, VertexaiMemoryConfig\nfrom autogen_core.memory import MemoryContent, MemoryMimeType\n\n# Configure memory\nconfig = VertexaiMemoryConfig(\n    api_resource_name=\"projects/my-project/locations/us-central1/......./\",\n    project_id=\"my-project\",\n    location=\"us-central1\",\n    user_id=\"user123\"\n)\n\nmemory = VertexaiMemory(config=config)\n\n# Store a memory\nawait memory.add(\n    content=MemoryContent(\n        content=\"User prefers concise responses and uses Python\",\n        mime_type=MemoryMimeType.TEXT\n    )\n)\n\n# Semantic search for relevant memories\nresults = await memory.query(query=\"programming preferences\")\nfor mem in results.results:\n    print(mem.content)\n# Output: User prefers concise responses and uses Python\n\n# Retrieve all memories\nall_memories = await memory.query(query=\"\")\n```\n\n### Using with Autogen Agents\n\n```python\nfrom autogen_core.model_context import ChatCompletionContext\nfrom autogen_core.models import UserMessage\n\n# Create chat context\ncontext = ChatCompletionContext()\n\n# Add user message\nawait context.add_message(\n    UserMessage(content=\"What programming language should I use?\")\n)\n\n# Inject relevant memories into context\nresult = await memory.update_context(context)\nprint(f\"Added {len(result.memories.results)} memories to context\")\n\n# Now the agent has access to stored preferences\n```\n\n### Environment Variables\n\nYou can also configure using environment variables:\n\n```bash\nexport VERTEX_PROJECT_ID=\"my-project\"\nexport VERTEX_LOCATION=\"us-central1\"\nexport VERTEX_USER_ID=\"user123\"\nexport VERTEX_API_RESOURCE_NAME=\"projects/my-project/locations/us-central1/memories/agent-memory\"\n```\n\n```python\n# Auto-loads from environment\nconfig = VertexaiMemoryConfig()\nmemory = VertexaiMemory(config=config)\n```\n\n## Memory Tools for Agents\n\nIntegrate memory capabilities directly into your Autogen agents:\n\n```python\nfrom autogen_agentchat.agents import AssistantAgent\nfrom autogen_ext.models.openai import OpenAIChatCompletionClient\nfrom autogen_vertexai_memory.tools import (\n    SearchVertexaiMemoryTool,\n    UpdateVertexaiMemoryTool,\n    VertexaiMemoryToolConfig\n)\n\n# Configure memory tools\nmemory_config = VertexaiMemoryToolConfig(\n    project_id=\"my-project\",\n    location=\"us-central1\",\n    user_id=\"user123\",\n    api_resource_name=\"projects/my-project/locations/us-central1/memories/agent-memory\"\n)\n\n# Create memory tools\nsearch_tool = SearchVertexaiMemoryTool(config=memory_config)\nupdate_tool = UpdateVertexaiMemoryTool(config=memory_config)\n\n# Create agent with memory tools\nagent = AssistantAgent(\n    name=\"memory_assistant\",\n    model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n    tools=[search_tool, update_tool],\n    system_message=\"\"\"You are a helpful assistant with memory capabilities.\n    \n    Use search_vertexai_memory_tool to retrieve relevant information about the user.\n    Use update_vertexai_memory_tool to store important facts you learn during conversations.\n    \"\"\"\n)\n\n# Now the agent can search and store memories automatically!\n# Example conversation:\n# User: \"I prefer Python for data analysis\"\n# Agent uses update_vertexai_memory_tool to store this preference\n# \n# Later...\n# User: \"What language should I use for my data project?\"\n# Agent uses search_vertexai_memory_tool, retrieves the preference, and responds accordingly\n```\n\n## API Reference\n\n### VertexaiMemoryConfig\n\nConfiguration model for VertexAI Memory.\n\n```python\nVertexaiMemoryConfig(\n    api_resource_name: str,  # Full resource name: \"projects/{project}/locations/{location}/memories/{memory}\"\n    project_id: str,         # Google Cloud project ID\n    location: str,           # GCP region (e.g., \"us-central1\", \"europe-west1\")\n    user_id: str            # Unique user identifier for memory isolation\n)\n```\n\n**Environment Variables:**\n- `VERTEX_API_RESOURCE_NAME`\n- `VERTEX_PROJECT_ID`\n- `VERTEX_LOCATION`\n- `VERTEX_USER_ID`\n\n### VertexaiMemory\n\nMain memory interface implementing Autogen's Memory protocol.\n\n```python\nVertexaiMemory(\n    config: Optional[VertexaiMemoryConfig] = None,\n    client: Optional[Client] = None\n)\n```\n\n**Methods:**\n\n#### `add(content, cancellation_token=None)`\nStore a new memory.\n\n```python\nawait memory.add(\n    content=MemoryContent(\n        content=\"Important fact to remember\",\n        mime_type=MemoryMimeType.TEXT\n    )\n)\n```\n\n#### `query(query=\"\", cancellation_token=None, **kwargs)`\nSearch memories or retrieve all.\n\n```python\n# Semantic search (top 3 results)\nresults = await memory.query(query=\"user preferences\")\n\n# Get all memories\nall_results = await memory.query(query=\"\")\n```\n\n**Returns:** `MemoryQueryResult` with list of `MemoryContent` objects\n\n#### `update_context(model_context)`\nInject memories into chat context as system message.\n\n```python\ncontext = ChatCompletionContext()\nresult = await memory.update_context(context)\n# Context now includes relevant memories\n```\n\n**Returns:** `UpdateContextResult` with retrieved memories\n\n#### `clear()`\n\u26a0\ufe0f **Permanently delete all memories** (irreversible).\n\n```python\nawait memory.clear()  # Use with caution!\n```\n\n#### `close()`\nCleanup resources (currently a no-op but provided for protocol compliance).\n\n```python\nawait memory.close()\n```\n\n### Memory Tools\n\n#### VertexaiMemoryToolConfig\n\nShared configuration for memory tools.\n\n```python\nVertexaiMemoryToolConfig(\n    project_id: str,\n    location: str,\n    user_id: str,\n    api_resource_name: str\n)\n```\n\n#### SearchVertexaiMemoryTool\n\nTool for semantic memory search. Automatically used by agents to retrieve relevant memories.\n\n```python\nSearchVertexaiMemoryTool(config: Optional[VertexaiMemoryToolConfig] = None, **kwargs)\n```\n\n**Tool Name:** `search_vertexai_memory_tool`  \n**Description:** Perform a search with given parameters using vertexai memory bank  \n**Parameters:**\n- `query` (str): Semantic search query to retrieve information about user\n- `top_k` (int, default=5): Maximum number of relevant memories to retrieve\n\n**Returns:** List of matching memory strings\n\n#### UpdateVertexaiMemoryTool\n\nTool for storing new memories. Automatically used by agents to save important information.\n\n```python\nUpdateVertexaiMemoryTool(config: Optional[VertexaiMemoryToolConfig] = None, **kwargs)\n```\n\n**Tool Name:** `update_vertexai_memory_tool`  \n**Description:** Store a new memory fact in the VertexAI memory bank for the user  \n**Parameters:**\n- `content` (str): The memory content to store as a fact in the memory bank\n\n**Returns:** Success status and message\n\n## Advanced Examples\n\n### Custom Client Configuration\n\n```python\nfrom vertexai import Client\n\n# Create custom client with specific settings\nclient = Client(\n    project=\"my-project\",\n    location=\"us-central1\"\n)\n\nmemory = VertexaiMemory(config=config, client=client)\n```\n\n### Async Context Manager\n\n```python\nasync with VertexaiMemory(config=config) as memory:\n    await memory.add(content)\n    results = await memory.query(\"query\")\n# Automatic cleanup\n```\n\n### Multi-User Isolation\n\n```python\n# User 1's memories\nuser1_config = VertexaiMemoryConfig(\n    api_resource_name=\"projects/my-project/locations/us-central1/memories/app-memory\",\n    project_id=\"my-project\",\n    location=\"us-central1\",\n    user_id=\"user1\"\n)\nuser1_memory = VertexaiMemory(config=user1_config)\n\n# User 2's memories (isolated from User 1)\nuser2_config = VertexaiMemoryConfig(\n    api_resource_name=\"projects/my-project/locations/us-central1/memories/app-memory\",\n    project_id=\"my-project\",\n    location=\"us-central1\",\n    user_id=\"user2\"\n)\nuser2_memory = VertexaiMemory(config=user2_config)\n```\n\n### Sharing Config Across Tools\n\n```python\nfrom autogen_agentchat.agents import AssistantAgent\nfrom autogen_ext.models.openai import OpenAIChatCompletionClient\nfrom autogen_vertexai_memory.tools import (\n    SearchVertexaiMemoryTool,\n    UpdateVertexaiMemoryTool,\n    VertexaiMemoryToolConfig\n)\n\n# Create config once\nconfig = VertexaiMemoryToolConfig(\n    project_id=\"my-project\",\n    location=\"us-central1\",\n    user_id=\"user123\",\n    api_resource_name=\"projects/my-project/locations/us-central1/memories/agent-memory\"\n)\n\n# Share across multiple tools\nsearch_tool = SearchVertexaiMemoryTool(config=config)\nupdate_tool = UpdateVertexaiMemoryTool(config=config)\n\n# Use in multiple agents\nagent1 = AssistantAgent(\n    name=\"agent1\",\n    model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n    tools=[search_tool, update_tool]\n)\n\nagent2 = AssistantAgent(\n    name=\"agent2\",\n    model_client=OpenAIChatCompletionClient(model=\"gpt-4\"),\n    tools=[search_tool]  # This agent can only search, not update\n)\n\n# Both agents use the same VertexAI client and configuration\n```\n\n## Development\n\n### Setup\n\n```bash\n# Clone repository\ngit clone https://github.com/thelaycon/autogen-vertexai-memory.git\ncd autogen-vertexai-memory\n\n# Install dependencies with Poetry\npoetry install\n\n# Run tests\npoetry run pytest\n\n# Run tests with coverage\npoetry run pytest --cov=autogen_vertexai_memory --cov-report=html\n\n# Type checking\npoetry run mypy src/autogen_vertexai_memory\n\n# Linting\npoetry run ruff check src/\n```\n\n### Project Structure\n\n```\nautogen-vertexai-memory/\n\u251c\u2500\u2500 src/\n\u2502   \u2514\u2500\u2500 autogen_vertexai_memory/\n\u2502       \u251c\u2500\u2500 __init__.py\n\u2502       \u251c\u2500\u2500 memory/\n\u2502       \u2502   \u251c\u2500\u2500 __init__.py\n\u2502       \u2502   \u2514\u2500\u2500 _vertexai_memory.py    # Main memory implementation\n\u2502       \u2514\u2500\u2500 tools/\n\u2502           \u251c\u2500\u2500 __init__.py\n\u2502           \u2514\u2500\u2500 _vertexai_memory_tools.py  # Tool implementations\n\u251c\u2500\u2500 tests/\n\u2502   \u251c\u2500\u2500 conftest.py\n\u2502   \u2514\u2500\u2500 test_vertexai_memory.py\n\u251c\u2500\u2500 pyproject.toml\n\u2514\u2500\u2500 README.md\n```\n\n### Running Tests\n\nThe test suite uses mocking to avoid real VertexAI API calls:\n\n```bash\n# Run all tests\npoetry run pytest\n\n# Run with verbose output\npoetry run pytest -v\n\n# Run specific test class\npoetry run pytest tests/test_vertexai_memory.py::TestVertexaiMemoryConfig\n\n# Run with coverage report\npoetry run pytest --cov=autogen_vertexai_memory --cov-report=term-missing\n```\n\n## Troubleshooting\n\n### Authentication Issues\n\n```python\n# Verify authentication\ngcloud auth application-default print-access-token\n\n# Set explicit credentials\nexport GOOGLE_APPLICATION_CREDENTIALS=\"/path/to/service-account-key.json\"\n```\n\n### Memory Resource Not Found\n\nEnsure your `api_resource_name` is correct:\n```python\n# Format: projects/{project_id}/locations/{location}/memories/{memory_id}\napi_resource_name = \"projects/my-project/locations/us-central1/memories/my-memory\"\n```\n\n### Empty Query Results\n\n```python\n# Check if memories exist\nall_memories = await memory.query(query=\"\")\nprint(f\"Total memories: {len(all_memories.results)}\")\n\n# Verify user_id matches\nprint(f\"Using user_id: {memory.user_id}\")\n```\n\n## Contributing\n\nContributions are welcome! Please follow these steps:\n\n1. Fork the repository\n2. Create a feature branch (`git checkout -b feature/amazing-feature`)\n3. Make your changes with tests\n4. Run tests (`poetry run pytest`)\n5. Commit your changes (`git commit -m 'Add amazing feature'`)\n6. Push to the branch (`git push origin feature/amazing-feature`)\n7. Open a Pull Request\n\n### Development Guidelines\n\n- Write tests for new features\n- Follow existing code style\n- Update documentation for API changes\n- Ensure all tests pass before submitting PR\n\n## License\n\nMIT License - see [LICENSE](LICENSE) file for details.\n\n## Support\n\n- \ud83d\udceb [GitHub Issues](https://github.com/thelaycon/autogen-vertexai-memory/issues) - Bug reports and feature requests\n- \ud83d\udcac [GitHub Discussions](https://github.com/thelaycon/autogen-vertexai-memory/discussions) - Questions and community support\n- \ud83d\udcda [VertexAI Documentation](https://cloud.google.com/vertex-ai/docs) - Official VertexAI docs\n- \ud83e\udd16 [Autogen Documentation](https://microsoft.github.io/autogen/) - Autogen framework docs\n\n## Acknowledgments\n\n- Built for the [Autogen](https://github.com/microsoft/autogen) framework\n- Powered by [Google Cloud VertexAI](https://cloud.google.com/vertex-ai)\n\n---\n\nMade with \u2764\ufe0f for the Autogen community",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "VertexAI Memory integration for Autogen agents",
    "version": "0.1.14",
    "project_urls": {
        "Documentation": "https://github.com/thelaycon/autogen-vertexai-memory",
        "Homepage": "https://github.com/thelaycon/autogen-vertexai-memory",
        "Repository": "https://github.com/thelaycon/autogen-vertexai-memory"
    },
    "split_keywords": [
        "autogen",
        " vertexai",
        " memory",
        " ai",
        " agents"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "039dbf4b1873098f937d5f525e6d8893256d40db931472c8e4d501559ad965b5",
                "md5": "0fe0bd3157435e50efd1f603cd2316f6",
                "sha256": "c20b9f3feb86d811a9ab22372b46d9c929481dbf9ac29088be4362aa757c0df9"
            },
            "downloads": -1,
            "filename": "autogen_vertexai_memory-0.1.14-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0fe0bd3157435e50efd1f603cd2316f6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 21701,
            "upload_time": "2025-10-21T05:18:17",
            "upload_time_iso_8601": "2025-10-21T05:18:17.561719Z",
            "url": "https://files.pythonhosted.org/packages/03/9d/bf4b1873098f937d5f525e6d8893256d40db931472c8e4d501559ad965b5/autogen_vertexai_memory-0.1.14-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "76c4dae12c043e1ac3d5c6fae84a062b1bb411fec3bedf396e8416b345159f5c",
                "md5": "81b4a746496045737943616e1406283f",
                "sha256": "24bab7a0269b979bd4f24abd09665a93332c1b930f1ab454162ce9b3e0bacc2c"
            },
            "downloads": -1,
            "filename": "autogen_vertexai_memory-0.1.14.tar.gz",
            "has_sig": false,
            "md5_digest": "81b4a746496045737943616e1406283f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 22134,
            "upload_time": "2025-10-21T05:18:19",
            "upload_time_iso_8601": "2025-10-21T05:18:19.454171Z",
            "url": "https://files.pythonhosted.org/packages/76/c4/dae12c043e1ac3d5c6fae84a062b1bb411fec3bedf396e8416b345159f5c/autogen_vertexai_memory-0.1.14.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-21 05:18:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thelaycon",
    "github_project": "autogen-vertexai-memory",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "autogen-vertexai-memory"
}
        
Elapsed time: 1.92363s