<div align="left">
<img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
</div>
# AutoGluon-Cloud
[](https://github.com/autogluon/autogluon-cloud/actions/workflows/continuous_integration.yml)
[AutoGluon-Cloud Documentation](https://auto.gluon.ai/cloud/stable/index.html) | [AutoGluon Documentation](https://auto.gluon.ai)
AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy [AutoGluon](https://auto.gluon.ai/stable/index.html) backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.
Currently, AutoGluon-Cloud supports [AWS SageMaker](https://aws.amazon.com/sagemaker/) as the cloud backend.
## Installation
```bash
pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud
```
## Example
```python
from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"} # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120} # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)
```
Raw data
{
"_id": null,
"home_page": "https://github.com/autogluon/autogluon-cloud",
"name": "autogluon.cloud",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.12,>=3.8",
"maintainer_email": null,
"keywords": null,
"author": "AutoGluon Community",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/09/94/b4fbbd86fff188d571d2a1ae7e193a3c78ea42024cbad73ff7bced806d11/autogluon.cloud-0.4.1.tar.gz",
"platform": null,
"description": "\n\n<div align=\"left\">\n <img src=\"https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png\" width=\"350\">\n</div>\n\n# AutoGluon-Cloud\n\n[](https://github.com/autogluon/autogluon-cloud/actions/workflows/continuous_integration.yml)\n\n[AutoGluon-Cloud Documentation](https://auto.gluon.ai/cloud/stable/index.html) | [AutoGluon Documentation](https://auto.gluon.ai)\n\nAutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy [AutoGluon](https://auto.gluon.ai/stable/index.html) backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.\n\nCurrently, AutoGluon-Cloud supports [AWS SageMaker](https://aws.amazon.com/sagemaker/) as the cloud backend.\n\n## Installation\n```bash\npip install -U pip\npip install -U setuptools wheel\npip install autogluon.cloud\n```\n\n## Example\n```python\n\nfrom autogluon.cloud import TabularCloudPredictor\nimport pandas as pd\ntrain_data = pd.read_csv(\"https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv\")\ntest_data = pd.read_csv(\"https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv\")\ntest_data.drop(columns=['class'], inplace=True)\npredictor_init_args = {\"label\": \"class\"} # init args you would pass to AG TabularPredictor\npredictor_fit_args = {\"train_data\": train_data, \"time_limit\": 120} # fit args you would pass to AG TabularPredictor\ncloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')\ncloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)\ncloud_predictor.deploy()\nresult = cloud_predictor.predict_real_time(test_data)\ncloud_predictor.cleanup_deployment()\n# Batch inference\nresult = cloud_predictor.predict(test_data)\n```\n\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Train and deploy AutoGluon backed models on the cloud",
"version": "0.4.1",
"project_urls": {
"Bug Reports": "https://github.com/autogluon/autogluon-cloud/issues",
"Contribute!": "https://github.com/autogluon/autogluon-cloud/blob/master/CONTRIBUTING.md",
"Documentation": "https://auto.gluon.ai",
"Homepage": "https://github.com/autogluon/autogluon-cloud",
"Source": "https://github.com/autogluon/autogluon-cloud/"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fc42093987a2968b42a86148e6029baa115ae63de55eaaaa45841e3fc363fc82",
"md5": "8f7a47b5bc18925bc734ac9ffbe53523",
"sha256": "99d8ef93776e6e08acaf7dfbfd8c8e6e46d7d4b0aa276712fa0606bc8f3128cb"
},
"downloads": -1,
"filename": "autogluon.cloud-0.4.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8f7a47b5bc18925bc734ac9ffbe53523",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.12,>=3.8",
"size": 92601,
"upload_time": "2024-09-20T03:02:42",
"upload_time_iso_8601": "2024-09-20T03:02:42.819342Z",
"url": "https://files.pythonhosted.org/packages/fc/42/093987a2968b42a86148e6029baa115ae63de55eaaaa45841e3fc363fc82/autogluon.cloud-0.4.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0994b4fbbd86fff188d571d2a1ae7e193a3c78ea42024cbad73ff7bced806d11",
"md5": "9978a2360829a769927d0cf3acbe69b8",
"sha256": "9810752e0112a68dc1d27139c4f4322da88d5b03c436732bf52b8843372e5d02"
},
"downloads": -1,
"filename": "autogluon.cloud-0.4.1.tar.gz",
"has_sig": false,
"md5_digest": "9978a2360829a769927d0cf3acbe69b8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.12,>=3.8",
"size": 69011,
"upload_time": "2024-09-20T03:02:44",
"upload_time_iso_8601": "2024-09-20T03:02:44.844160Z",
"url": "https://files.pythonhosted.org/packages/09/94/b4fbbd86fff188d571d2a1ae7e193a3c78ea42024cbad73ff7bced806d11/autogluon.cloud-0.4.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-20 03:02:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autogluon",
"github_project": "autogluon-cloud",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "autogluon.cloud"
}