autogluon.cloud


Nameautogluon.cloud JSON
Version 0.4.1 PyPI version JSON
download
home_pagehttps://github.com/autogluon/autogluon-cloud
SummaryTrain and deploy AutoGluon backed models on the cloud
upload_time2024-09-20 03:02:44
maintainerNone
docs_urlNone
authorAutoGluon Community
requires_python<3.12,>=3.8
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            

<div align="left">
  <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
</div>

# AutoGluon-Cloud

[![Continuous Integration](https://github.com/autogluon/autogluon-cloud/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon-cloud/actions/workflows/continuous_integration.yml)

[AutoGluon-Cloud Documentation](https://auto.gluon.ai/cloud/stable/index.html) | [AutoGluon Documentation](https://auto.gluon.ai)

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy [AutoGluon](https://auto.gluon.ai/stable/index.html) backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports [AWS SageMaker](https://aws.amazon.com/sagemaker/) as the cloud backend.

## Installation
```bash
pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud
```

## Example
```python

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/autogluon/autogluon-cloud",
    "name": "autogluon.cloud",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "AutoGluon Community",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/09/94/b4fbbd86fff188d571d2a1ae7e193a3c78ea42024cbad73ff7bced806d11/autogluon.cloud-0.4.1.tar.gz",
    "platform": null,
    "description": "\n\n<div align=\"left\">\n  <img src=\"https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png\" width=\"350\">\n</div>\n\n# AutoGluon-Cloud\n\n[![Continuous Integration](https://github.com/autogluon/autogluon-cloud/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon-cloud/actions/workflows/continuous_integration.yml)\n\n[AutoGluon-Cloud Documentation](https://auto.gluon.ai/cloud/stable/index.html) | [AutoGluon Documentation](https://auto.gluon.ai)\n\nAutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy [AutoGluon](https://auto.gluon.ai/stable/index.html) backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.\n\nCurrently, AutoGluon-Cloud supports [AWS SageMaker](https://aws.amazon.com/sagemaker/) as the cloud backend.\n\n## Installation\n```bash\npip install -U pip\npip install -U setuptools wheel\npip install autogluon.cloud\n```\n\n## Example\n```python\n\nfrom autogluon.cloud import TabularCloudPredictor\nimport pandas as pd\ntrain_data = pd.read_csv(\"https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv\")\ntest_data = pd.read_csv(\"https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv\")\ntest_data.drop(columns=['class'], inplace=True)\npredictor_init_args = {\"label\": \"class\"}  # init args you would pass to AG TabularPredictor\npredictor_fit_args = {\"train_data\": train_data, \"time_limit\": 120}  # fit args you would pass to AG TabularPredictor\ncloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')\ncloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)\ncloud_predictor.deploy()\nresult = cloud_predictor.predict_real_time(test_data)\ncloud_predictor.cleanup_deployment()\n# Batch inference\nresult = cloud_predictor.predict(test_data)\n```\n\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Train and deploy AutoGluon backed models on the cloud",
    "version": "0.4.1",
    "project_urls": {
        "Bug Reports": "https://github.com/autogluon/autogluon-cloud/issues",
        "Contribute!": "https://github.com/autogluon/autogluon-cloud/blob/master/CONTRIBUTING.md",
        "Documentation": "https://auto.gluon.ai",
        "Homepage": "https://github.com/autogluon/autogluon-cloud",
        "Source": "https://github.com/autogluon/autogluon-cloud/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fc42093987a2968b42a86148e6029baa115ae63de55eaaaa45841e3fc363fc82",
                "md5": "8f7a47b5bc18925bc734ac9ffbe53523",
                "sha256": "99d8ef93776e6e08acaf7dfbfd8c8e6e46d7d4b0aa276712fa0606bc8f3128cb"
            },
            "downloads": -1,
            "filename": "autogluon.cloud-0.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8f7a47b5bc18925bc734ac9ffbe53523",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.8",
            "size": 92601,
            "upload_time": "2024-09-20T03:02:42",
            "upload_time_iso_8601": "2024-09-20T03:02:42.819342Z",
            "url": "https://files.pythonhosted.org/packages/fc/42/093987a2968b42a86148e6029baa115ae63de55eaaaa45841e3fc363fc82/autogluon.cloud-0.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0994b4fbbd86fff188d571d2a1ae7e193a3c78ea42024cbad73ff7bced806d11",
                "md5": "9978a2360829a769927d0cf3acbe69b8",
                "sha256": "9810752e0112a68dc1d27139c4f4322da88d5b03c436732bf52b8843372e5d02"
            },
            "downloads": -1,
            "filename": "autogluon.cloud-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "9978a2360829a769927d0cf3acbe69b8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.8",
            "size": 69011,
            "upload_time": "2024-09-20T03:02:44",
            "upload_time_iso_8601": "2024-09-20T03:02:44.844160Z",
            "url": "https://files.pythonhosted.org/packages/09/94/b4fbbd86fff188d571d2a1ae7e193a3c78ea42024cbad73ff7bced806d11/autogluon.cloud-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-20 03:02:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "autogluon",
    "github_project": "autogluon-cloud",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autogluon.cloud"
}
        
Elapsed time: 0.85274s