autohedge


Nameautohedge JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/The-Swarm-Corporation/AutoHedge
Summaryautohedge - TGSC
upload_time2024-12-12 05:20:58
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements swarms tickr-agent pydantic loguru swarm-models
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AutoHedge 🚀

[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)


[![PyPI version](https://badge.fury.io/py/autohedge.svg)](https://badge.fury.io/py/autohedge)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![Documentation Status](https://readthedocs.org/projects/autohedge/badge/?version=latest)](https://autohedge.readthedocs.io)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

Build your autonomous hedge fund in minutes. AutoHedge harnesses the power of swarm intelligence and AI agents to automate market analysis, risk management, and trade execution.

## 🌟 Features

- **Multi-Agent Architecture**: Leverages specialized AI agents for different aspects of trading
  - Director Agent for strategy and thesis generation
  - Quant Agent for technical analysis
  - Risk Management Agent for position sizing and risk assessment
  - Execution Agent for trade implementation

- **Real-Time Market Analysis**: Integrates with market data providers for live analysis
- **Risk-First Approach**: Built-in risk management and position sizing
- **Structured Output**: JSON-formatted trade recommendations and analysis
- **Comprehensive Logging**: Detailed logging system for trade tracking and debugging
- **Extensible Framework**: Easy to customize and extend with new capabilities

## 📋 Requirements

- Python 3.8+
- `swarms` package
- `tickr-agent`
- Additional dependencies listed in `requirements.txt`

## 🚀 Quick Start

### Installation

```bash
pip install -U autohedge
```

### Environment Variables

```bash
OPENAI_API_KEY=""
WORKSPACE_DIR="agent_workspace"
```

### Basic Usage

```python
# Example usage
from autohedge import AutoFund

# Define the stocks to analyze
stocks = ["NVDA"]

# Initialize the trading system with the specified stocks
trading_system = AutoFund(stocks)

# Define the task for the trading cycle
task = "Let's analyze nvidia to see if we should buy it, we have 50k$ in allocation"

# Run the trading cycle and print the results
print(trading_system.run(task=task))

```

## 🏗️ Architecture

AutoHedge uses a multi-agent architecture where each agent specializes in a specific aspect of the trading process:

```mermaid
graph TD
    A[Director Agent] --> B[Quant Agent]
    B --> C[Risk Manager]
    C --> D[Execution Agent]
    D --> E[Trade Output]
```

### Agent Roles

1. **Director Agent**
   - Generates trading theses
   - Coordinates overall strategy
   - Analyzes market conditions

2. **Quant Agent**
   - Performs technical analysis
   - Evaluates statistical patterns
   - Calculates probability scores

3. **Risk Manager**
   - Assesses trade risks
   - Determines position sizing
   - Sets risk parameters

4. **Execution Agent**
   - Generates trade orders
   - Sets entry/exit points
   - Manages order execution

## 📊 Output Format

AutoHedge generates structured output using Pydantic models:

```python
class AutoHedgeOutput(BaseModel):
    id: str                         # Unique identifier
    name: Optional[str]             # Strategy name
    description: Optional[str]      # Strategy description
    stocks: Optional[List[str]]     # List of stocks
    task: Optional[str]             # Analysis task
    thesis: Optional[str]           # Trading thesis
    risk_assessment: Optional[str]  # Risk analysis
    order: Optional[Dict]           # Trade order details
    timestamp: str                  # Timestamp
    current_stock: str              # Current stock being analyzed
```

## 🔧 Configuration

AutoHedge can be configured through environment variables or initialization parameters:

```python
trading_system = AutoFund(
    name="CustomStrategy",
    description="My Trading Strategy",
    stocks=["NVDA", "AAPL"],
    output_dir="custom_outputs"
)
```


## 📝 Logging

AutoHedge uses the `loguru` library for comprehensive logging:

```python
logger.add(
    "trading_system_{time}.log",
    rotation="500 MB",
    retention="10 days",
    level="INFO",
    format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}"
)
```

## 🔍 Advanced Usage

### Custom Agent Configuration

```python
from autohedge import TradingDirector, QuantAnalyst, RiskManager

# Custom director configuration
director = TradingDirector(
    stocks=["NVDA", "AAPL"],
    output_dir="custom_outputs"
)

# Custom analysis
analysis = director.generate_thesis(
    task="Generate comprehensive analysis",
    stock="NVDA"
)
```

### Risk Management

```python
from autohedge import RiskManager

risk_manager = RiskManager()
assessment = risk_manager.assess_risk(
    stock="NVDA",
    thesis=thesis,
    quant_analysis=analysis
)
```

# Diagrams

## 🏗️ System Architecture

### High-Level Component Overview
```mermaid
flowchart TB
    subgraph Client
        A[AutoHedge Client] --> B[Trading System]
    end
    
    subgraph Agents["Multi-Agent System"]
        B --> C{Director Agent}
        C --> D[Quant Agent]
        C --> E[Risk Agent]
        C --> F[Execution Agent]
        
        D --> G[Technical Analysis]
        D --> H[Statistical Analysis]
        
        E --> I[Risk Assessment]
        E --> J[Position Sizing]
        
        F --> K[Order Generation]
        F --> L[Trade Execution]
    end
    
    subgraph Output
        K --> M[JSON Output]
        L --> N[Trade Logs]
    end
```

### Trading Cycle Sequence
```mermaid
sequenceDiagram
    participant C as Client
    participant D as Director
    participant Q as Quant
    participant R as Risk
    participant E as Execution
    
    C->>D: Initialize Trading Cycle
    activate D
    D->>D: Generate Thesis
    D->>Q: Request Analysis
    activate Q
    Q-->>D: Return Analysis
    deactivate Q
    D->>R: Request Risk Assessment
    activate R
    R-->>D: Return Risk Profile
    deactivate R
    D->>E: Generate Order
    activate E
    E-->>D: Return Order Details
    deactivate E
    D-->>C: Return Complete Analysis
    deactivate D
```

### Trade State Machine
```mermaid
stateDiagram-v2
    [*] --> Initialization
    Initialization --> ThesisGeneration
    
    ThesisGeneration --> QuantAnalysis
    QuantAnalysis --> RiskAssessment
    
    RiskAssessment --> OrderGeneration: Risk Approved
    RiskAssessment --> ThesisGeneration: Risk Rejected
    
    OrderGeneration --> OrderExecution
    OrderExecution --> Monitoring
    
    Monitoring --> ThesisGeneration: New Cycle
    Monitoring --> [*]: Complete
```

### Data Flow
```mermaid
flowchart LR
    subgraph Input
        A[Market Data] --> B[Technical Indicators]
        A --> C[Fundamental Data]
    end
    
    subgraph Processing
        B --> D[Quant Analysis]
        C --> D
        D --> E[Risk Analysis]
        E --> F[Order Generation]
    end
    
    subgraph Output
        F --> G[Trade Orders]
        F --> H[Risk Reports]
        F --> I[Performance Metrics]
    end
```

### Class Structure
```mermaid
classDiagram
    class AutoFund {
        +String name
        +String description
        +List stocks
        +Path output_dir
        +run()
    }
    
    class TradingDirector {
        +Agent director_agent
        +TickrAgent tickr
        +generate_thesis()
    }
    
    class QuantAnalyst {
        +Agent quant_agent
        +analyze()
    }
    
    class RiskManager {
        +Agent risk_agent
        +assess_risk()
    }
    
    class ExecutionAgent {
        +Agent execution_agent
        +generate_order()
    }
    
    AutoFund --> TradingDirector
    AutoFund --> QuantAnalyst
    AutoFund --> RiskManager
    AutoFund --> ExecutionAgent
```

## 🤝 Contributing

We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

## 📜 License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 🙏 Acknowledgments

- [Swarms](https://swarms.ai) for the AI agent framework
- [Tickr Agent](https://github.com/The-Swarm-Corporation/tickr-agent) for market data integration

## 📞 Support

<!-- - Documentation: [https://autohedge.readthedocs.io](https://autohedge.readthedocs.io) -->
- Issue Tracker: [GitHub Issues](https://github.com/The-Swarm-Corporation/AutoHedge/issues)
- Discord: [Join our community](https://swarms.ai)

---
Created with ❤️ by [The Swarm Corporation](https://github.com/The-Swarm-Corporation)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/The-Swarm-Corporation/AutoHedge",
    "name": "autohedge",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/30/f1/d84bbe2c8357751280feb505329a32f152c25bcb83558eae84ad01e81279/autohedge-0.1.0.tar.gz",
    "platform": null,
    "description": "# AutoHedge \ud83d\ude80\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\n\n[![PyPI version](https://badge.fury.io/py/autohedge.svg)](https://badge.fury.io/py/autohedge)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![Documentation Status](https://readthedocs.org/projects/autohedge/badge/?version=latest)](https://autohedge.readthedocs.io)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\nBuild your autonomous hedge fund in minutes. AutoHedge harnesses the power of swarm intelligence and AI agents to automate market analysis, risk management, and trade execution.\n\n## \ud83c\udf1f Features\n\n- **Multi-Agent Architecture**: Leverages specialized AI agents for different aspects of trading\n  - Director Agent for strategy and thesis generation\n  - Quant Agent for technical analysis\n  - Risk Management Agent for position sizing and risk assessment\n  - Execution Agent for trade implementation\n\n- **Real-Time Market Analysis**: Integrates with market data providers for live analysis\n- **Risk-First Approach**: Built-in risk management and position sizing\n- **Structured Output**: JSON-formatted trade recommendations and analysis\n- **Comprehensive Logging**: Detailed logging system for trade tracking and debugging\n- **Extensible Framework**: Easy to customize and extend with new capabilities\n\n## \ud83d\udccb Requirements\n\n- Python 3.8+\n- `swarms` package\n- `tickr-agent`\n- Additional dependencies listed in `requirements.txt`\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\n```bash\npip install -U autohedge\n```\n\n### Environment Variables\n\n```bash\nOPENAI_API_KEY=\"\"\nWORKSPACE_DIR=\"agent_workspace\"\n```\n\n### Basic Usage\n\n```python\n# Example usage\nfrom autohedge import AutoFund\n\n# Define the stocks to analyze\nstocks = [\"NVDA\"]\n\n# Initialize the trading system with the specified stocks\ntrading_system = AutoFund(stocks)\n\n# Define the task for the trading cycle\ntask = \"Let's analyze nvidia to see if we should buy it, we have 50k$ in allocation\"\n\n# Run the trading cycle and print the results\nprint(trading_system.run(task=task))\n\n```\n\n## \ud83c\udfd7\ufe0f Architecture\n\nAutoHedge uses a multi-agent architecture where each agent specializes in a specific aspect of the trading process:\n\n```mermaid\ngraph TD\n    A[Director Agent] --> B[Quant Agent]\n    B --> C[Risk Manager]\n    C --> D[Execution Agent]\n    D --> E[Trade Output]\n```\n\n### Agent Roles\n\n1. **Director Agent**\n   - Generates trading theses\n   - Coordinates overall strategy\n   - Analyzes market conditions\n\n2. **Quant Agent**\n   - Performs technical analysis\n   - Evaluates statistical patterns\n   - Calculates probability scores\n\n3. **Risk Manager**\n   - Assesses trade risks\n   - Determines position sizing\n   - Sets risk parameters\n\n4. **Execution Agent**\n   - Generates trade orders\n   - Sets entry/exit points\n   - Manages order execution\n\n## \ud83d\udcca Output Format\n\nAutoHedge generates structured output using Pydantic models:\n\n```python\nclass AutoHedgeOutput(BaseModel):\n    id: str                         # Unique identifier\n    name: Optional[str]             # Strategy name\n    description: Optional[str]      # Strategy description\n    stocks: Optional[List[str]]     # List of stocks\n    task: Optional[str]             # Analysis task\n    thesis: Optional[str]           # Trading thesis\n    risk_assessment: Optional[str]  # Risk analysis\n    order: Optional[Dict]           # Trade order details\n    timestamp: str                  # Timestamp\n    current_stock: str              # Current stock being analyzed\n```\n\n## \ud83d\udd27 Configuration\n\nAutoHedge can be configured through environment variables or initialization parameters:\n\n```python\ntrading_system = AutoFund(\n    name=\"CustomStrategy\",\n    description=\"My Trading Strategy\",\n    stocks=[\"NVDA\", \"AAPL\"],\n    output_dir=\"custom_outputs\"\n)\n```\n\n\n## \ud83d\udcdd Logging\n\nAutoHedge uses the `loguru` library for comprehensive logging:\n\n```python\nlogger.add(\n    \"trading_system_{time}.log\",\n    rotation=\"500 MB\",\n    retention=\"10 days\",\n    level=\"INFO\",\n    format=\"{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}\"\n)\n```\n\n## \ud83d\udd0d Advanced Usage\n\n### Custom Agent Configuration\n\n```python\nfrom autohedge import TradingDirector, QuantAnalyst, RiskManager\n\n# Custom director configuration\ndirector = TradingDirector(\n    stocks=[\"NVDA\", \"AAPL\"],\n    output_dir=\"custom_outputs\"\n)\n\n# Custom analysis\nanalysis = director.generate_thesis(\n    task=\"Generate comprehensive analysis\",\n    stock=\"NVDA\"\n)\n```\n\n### Risk Management\n\n```python\nfrom autohedge import RiskManager\n\nrisk_manager = RiskManager()\nassessment = risk_manager.assess_risk(\n    stock=\"NVDA\",\n    thesis=thesis,\n    quant_analysis=analysis\n)\n```\n\n# Diagrams\n\n## \ud83c\udfd7\ufe0f System Architecture\n\n### High-Level Component Overview\n```mermaid\nflowchart TB\n    subgraph Client\n        A[AutoHedge Client] --> B[Trading System]\n    end\n    \n    subgraph Agents[\"Multi-Agent System\"]\n        B --> C{Director Agent}\n        C --> D[Quant Agent]\n        C --> E[Risk Agent]\n        C --> F[Execution Agent]\n        \n        D --> G[Technical Analysis]\n        D --> H[Statistical Analysis]\n        \n        E --> I[Risk Assessment]\n        E --> J[Position Sizing]\n        \n        F --> K[Order Generation]\n        F --> L[Trade Execution]\n    end\n    \n    subgraph Output\n        K --> M[JSON Output]\n        L --> N[Trade Logs]\n    end\n```\n\n### Trading Cycle Sequence\n```mermaid\nsequenceDiagram\n    participant C as Client\n    participant D as Director\n    participant Q as Quant\n    participant R as Risk\n    participant E as Execution\n    \n    C->>D: Initialize Trading Cycle\n    activate D\n    D->>D: Generate Thesis\n    D->>Q: Request Analysis\n    activate Q\n    Q-->>D: Return Analysis\n    deactivate Q\n    D->>R: Request Risk Assessment\n    activate R\n    R-->>D: Return Risk Profile\n    deactivate R\n    D->>E: Generate Order\n    activate E\n    E-->>D: Return Order Details\n    deactivate E\n    D-->>C: Return Complete Analysis\n    deactivate D\n```\n\n### Trade State Machine\n```mermaid\nstateDiagram-v2\n    [*] --> Initialization\n    Initialization --> ThesisGeneration\n    \n    ThesisGeneration --> QuantAnalysis\n    QuantAnalysis --> RiskAssessment\n    \n    RiskAssessment --> OrderGeneration: Risk Approved\n    RiskAssessment --> ThesisGeneration: Risk Rejected\n    \n    OrderGeneration --> OrderExecution\n    OrderExecution --> Monitoring\n    \n    Monitoring --> ThesisGeneration: New Cycle\n    Monitoring --> [*]: Complete\n```\n\n### Data Flow\n```mermaid\nflowchart LR\n    subgraph Input\n        A[Market Data] --> B[Technical Indicators]\n        A --> C[Fundamental Data]\n    end\n    \n    subgraph Processing\n        B --> D[Quant Analysis]\n        C --> D\n        D --> E[Risk Analysis]\n        E --> F[Order Generation]\n    end\n    \n    subgraph Output\n        F --> G[Trade Orders]\n        F --> H[Risk Reports]\n        F --> I[Performance Metrics]\n    end\n```\n\n### Class Structure\n```mermaid\nclassDiagram\n    class AutoFund {\n        +String name\n        +String description\n        +List stocks\n        +Path output_dir\n        +run()\n    }\n    \n    class TradingDirector {\n        +Agent director_agent\n        +TickrAgent tickr\n        +generate_thesis()\n    }\n    \n    class QuantAnalyst {\n        +Agent quant_agent\n        +analyze()\n    }\n    \n    class RiskManager {\n        +Agent risk_agent\n        +assess_risk()\n    }\n    \n    class ExecutionAgent {\n        +Agent execution_agent\n        +generate_order()\n    }\n    \n    AutoFund --> TradingDirector\n    AutoFund --> QuantAnalyst\n    AutoFund --> RiskManager\n    AutoFund --> ExecutionAgent\n```\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/AmazingFeature`)\n3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)\n4. Push to the branch (`git push origin feature/AmazingFeature`)\n5. Open a Pull Request\n\n## \ud83d\udcdc License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- [Swarms](https://swarms.ai) for the AI agent framework\n- [Tickr Agent](https://github.com/The-Swarm-Corporation/tickr-agent) for market data integration\n\n## \ud83d\udcde Support\n\n<!-- - Documentation: [https://autohedge.readthedocs.io](https://autohedge.readthedocs.io) -->\n- Issue Tracker: [GitHub Issues](https://github.com/The-Swarm-Corporation/AutoHedge/issues)\n- Discord: [Join our community](https://swarms.ai)\n\n---\nCreated with \u2764\ufe0f by [The Swarm Corporation](https://github.com/The-Swarm-Corporation)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "autohedge - TGSC",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://github.com/The-Swarm-Corporation/AutoHedge",
        "Homepage": "https://github.com/The-Swarm-Corporation/AutoHedge",
        "Repository": "https://github.com/The-Swarm-Corporation/AutoHedge"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "272c0640197498266d2b1221aa438f4b31529004b6c1b7a22501b93e52ecf255",
                "md5": "bb78d3bb0dbb3fc4d7b92916cda4128e",
                "sha256": "33cfc16324aa1f725518a47a2fddb61ada2b94a69152692b7a732cd782fdd470"
            },
            "downloads": -1,
            "filename": "autohedge-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bb78d3bb0dbb3fc4d7b92916cda4128e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 15661,
            "upload_time": "2024-12-12T05:20:55",
            "upload_time_iso_8601": "2024-12-12T05:20:55.644010Z",
            "url": "https://files.pythonhosted.org/packages/27/2c/0640197498266d2b1221aa438f4b31529004b6c1b7a22501b93e52ecf255/autohedge-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "30f1d84bbe2c8357751280feb505329a32f152c25bcb83558eae84ad01e81279",
                "md5": "bbe56c21529dcdbda17d305c3778fa0e",
                "sha256": "891d32f3c833598ff242247b2b04b27c577ee463d7524229cf4a1455582a3418"
            },
            "downloads": -1,
            "filename": "autohedge-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "bbe56c21529dcdbda17d305c3778fa0e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 16436,
            "upload_time": "2024-12-12T05:20:58",
            "upload_time_iso_8601": "2024-12-12T05:20:58.500929Z",
            "url": "https://files.pythonhosted.org/packages/30/f1/d84bbe2c8357751280feb505329a32f152c25bcb83558eae84ad01e81279/autohedge-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-12 05:20:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "The-Swarm-Corporation",
    "github_project": "AutoHedge",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "swarms",
            "specs": []
        },
        {
            "name": "tickr-agent",
            "specs": []
        },
        {
            "name": "pydantic",
            "specs": []
        },
        {
            "name": "loguru",
            "specs": []
        },
        {
            "name": "swarm-models",
            "specs": []
        }
    ],
    "lcname": "autohedge"
}
        
Elapsed time: 0.38070s