# AutoIntent
<img align="left" width="100" height="100" src="logo/square-light.svg#gh-light-mode-only">
<img align="left" width="100" height="100" src="logo/square-dark.svg#gh-dark-mode-only">
Auto ML for intent classification.
Documentation: [deeppavlov.github.io/AutoIntent](https://deeppavlov.github.io/AutoIntent/).
> The project is under active development.
## Installation
```bash
pip install autointent
```
## About
**AutoIntent** is an open source tool for automatic configuration of a text classification pipeline for intent prediction.
The task of intent detection is one of the main subtasks in creating task-oriented dialogue systems, along with scriptwriting and slot filling. AutoIntent project offers users the following:
- A convenient library of methods for intent classification that can be used in a sklearn-like "fit-predict" format.
- An AutoML approach to creating classifiers, where the only thing needed is to upload a set of labeled data.
Example of building an intent classifier in a couple of lines of code:
```python
from autointent import Pipeline, Dataset
dataset = Dataset.from_json(path_to_json)
pipeline = Pipeline.default_optimizer(multilabel=False)
pipeline.fit(dataset)
pipeline.predict(["show me my latest recent transactions"])
```
Raw data
{
"_id": null,
"home_page": "https://deeppavlov.github.io/AutoIntent/",
"name": "autointent",
"maintainer": "Alexeev Ilya",
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": "ilya_alekseev_2016@list.ru",
"keywords": "nlp, dialog-systems, transformers, auto-ml",
"author": "Alexeev Ilya",
"author_email": "ilya_alekseev_2016@list.ru",
"download_url": "https://files.pythonhosted.org/packages/c5/36/2fae4074aaa821e86445ce1ba08709f6b6f3364a472d7fffb19514dedbfd/autointent-0.0.1.tar.gz",
"platform": null,
"description": "# AutoIntent\n\n<img align=\"left\" width=\"100\" height=\"100\" src=\"logo/square-light.svg#gh-light-mode-only\">\n<img align=\"left\" width=\"100\" height=\"100\" src=\"logo/square-dark.svg#gh-dark-mode-only\">\n\nAuto ML for intent classification.\n\nDocumentation: [deeppavlov.github.io/AutoIntent](https://deeppavlov.github.io/AutoIntent/).\n\n> The project is under active development.\n\n## Installation\n\n```bash\npip install autointent\n```\n\n## About\n\n**AutoIntent** is an open source tool for automatic configuration of a text classification pipeline for intent prediction.\n\nThe task of intent detection is one of the main subtasks in creating task-oriented dialogue systems, along with scriptwriting and slot filling. AutoIntent project offers users the following:\n\n- A convenient library of methods for intent classification that can be used in a sklearn-like \"fit-predict\" format.\n- An AutoML approach to creating classifiers, where the only thing needed is to upload a set of labeled data.\n\nExample of building an intent classifier in a couple of lines of code:\n\n```python\nfrom autointent import Pipeline, Dataset\n\ndataset = Dataset.from_json(path_to_json)\npipeline = Pipeline.default_optimizer(multilabel=False)\npipeline.fit(dataset)\npipeline.predict([\"show me my latest recent transactions\"])\n```\n\n",
"bugtrack_url": null,
"license": null,
"summary": "A tool for automatically configuring a text classification pipeline for intent prediction.",
"version": "0.0.1",
"project_urls": {
"Documentation": "https://deeppavlov.github.io/AutoIntent/",
"Homepage": "https://deeppavlov.github.io/AutoIntent/",
"Repository": "https://github.com/deeppavlov/AutoIntent"
},
"split_keywords": [
"nlp",
" dialog-systems",
" transformers",
" auto-ml"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ce7d319c57e7b68b6ad065b12dab199211102ee7d16bdedb1524f5ce99a5a007",
"md5": "71ba294bfcca5bfbfef340d4f74ebd12",
"sha256": "4a363ebfb1cb9c8fce4270821db39fe4c193648f34b917a14a1b285be10fa364"
},
"downloads": -1,
"filename": "autointent-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "71ba294bfcca5bfbfef340d4f74ebd12",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 113519,
"upload_time": "2024-12-09T04:29:11",
"upload_time_iso_8601": "2024-12-09T04:29:11.237556Z",
"url": "https://files.pythonhosted.org/packages/ce/7d/319c57e7b68b6ad065b12dab199211102ee7d16bdedb1524f5ce99a5a007/autointent-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c5362fae4074aaa821e86445ce1ba08709f6b6f3364a472d7fffb19514dedbfd",
"md5": "63ab8bd8a719fdd59a9d1f9addc09163",
"sha256": "f499204b1b7265cb12c72c85c25d256ca69741f0dec788aa0dfef8fda5254c2e"
},
"downloads": -1,
"filename": "autointent-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "63ab8bd8a719fdd59a9d1f9addc09163",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 73468,
"upload_time": "2024-12-09T04:29:13",
"upload_time_iso_8601": "2024-12-09T04:29:13.374710Z",
"url": "https://files.pythonhosted.org/packages/c5/36/2fae4074aaa821e86445ce1ba08709f6b6f3364a472d7fffb19514dedbfd/autointent-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-09 04:29:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "deeppavlov",
"github_project": "AutoIntent",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "autointent"
}