automagik-spark


Nameautomagik-spark JSON
Version 0.3.7 PyPI version JSON
download
home_pagehttps://github.com/namastexlabs/automagik-spark
SummaryAutoMagik Spark - Automagion Engine with LangFlow integration
upload_time2025-08-25 22:44:14
maintainerNone
docs_urlNone
authorNamasteX Labs
requires_python>=3.9
licenseNone
keywords automation workflow langflow ai llm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <img src=".github/images/automagik_logo.png" alt="Spark Logo" width="600"/>
</p>

# Spark

> **Because magic shouldn't be complicated. **

Spark is an automagion engine that seamlessly integrates with multiple [LangFlow](https://github.com/langflow-ai/langflow) instances. Deploy AI-driven flows, schedule one-time or recurring tasks, and monitor everything with minimal fussβ€”no coding required.

## πŸ”— Ecosystem

- **[AutoMagik Agents](https://github.com/namastexlabs/automagik-agents)**: Develop production-level AI agents
- **[AutoMagik UI](https://github.com/namastexlabs/automagik-ui)**: Create agents using natural language with our dedicated UI

## πŸš€ Installation

Spark provides two setup options:

### Prerequisites

- Linux-based system (Ubuntu/Debian recommended)
- Docker and Docker Compose (automatically installed on Ubuntu/Debian if not present)

### Local Production Setup

For a production-ready local environment:

```bash
./scripts/setup_local.sh
```

### Development Setup

For development with PostgreSQL and Redis Docker containers:

```bash
./scripts/setup_dev.sh
```

### What Happens During Setup

Both setup scripts will:
- Create necessary environment files
- Install Docker if needed (on Ubuntu/Debian)
- Set up all required services
- Install the CLI tool (optional)
- Guide you through the entire process

### After Installation

You'll have access to:
- **Spark API**: Running at [http://localhost:8883](http://localhost:8883)
- **PostgreSQL Database**: Available at `localhost:15432`
- **Worker Service**: Running and ready to process tasks
- **CLI Tool**: Installed (if chosen during setup)

### Verifying Your Installation

The setup automatically verifies all services, but you can also check manually:

```bash
# Access API documentation
open http://localhost:8883/api/v1/docs  # Interactive Swagger UI
open http://localhost:8883/api/v1/redoc # ReDoc documentation

# List flows (requires CLI installation)
source .venv/bin/activate
automagik-spark flow list
```

## 🧩 System Components

- **API Server**: Handles all HTTP requests and core logic
- **Worker**: Processes tasks and schedules
- **Database**: PostgreSQL with all required tables automatically created
- **LangFlow** (optional): Visual flow editor for creating AI workflows
- **CLI Tool** (optional): Command-line interface for managing flows and tasks

## πŸ—οΈ System Architecture

```mermaid
flowchart LR
    subgraph Services
      DB[PostgreSQL]
      LF1[LangFlow Instance 1]
      LF2[LangFlow Instance 2]
    end
    subgraph Spark
      CLI[CLI]
      API[API Server]
      CW[Celery Worker]
      W[Worker]
    end
    API -- uses --> DB
    API -- triggers --> CW
    W -- processes --> API
    API -- integrates with --> LF1
    API -- integrates with --> LF2
    CLI -- controls --> API
    API -- has UI --> UI[Automagik UI]
```

### Core Components Explained

- **API**: Core service handling requests and business logic
- **Worker**: Processes tasks and schedules
- **CLI**: Command-line tool for managing flows and tasks
- **PostgreSQL**: Stores flows, tasks, schedules, and other data
- **LangFlow**: Optional service for creating and editing flows

## πŸ“š API Documentation

For complete API documentation, visit:
- **Swagger UI**: [http://localhost:8883/api/v1/docs](http://localhost:8883/api/v1/docs)
- **ReDoc**: [http://localhost:8883/api/v1/redoc](http://localhost:8883/api/v1/redoc)

## πŸ› οΈ Next Steps

1. If you installed LangFlow, visit [http://localhost:17860](http://localhost:17860) to create your first flow
2. Use the API at [http://localhost:8883/api/v1/docs](http://localhost:8883/api/v1/docs) to manage your flows and tasks
3. Try out the CLI commands with `automagik-spark --help`
4. Monitor task execution through logs and API endpoints

## πŸ“Š Telemetry

Spark collects anonymous usage analytics to help improve the project. This data helps us understand which features are most useful and prioritize development efforts.

### What We Collect
- Command usage and performance metrics
- API endpoint usage patterns
- Workflow execution statistics
- System information (OS, Python version)
- Error rates and types

### What We DON'T Collect
- Personal information or credentials
- Actual workflow data or content
- File paths or environment variables
- Database connection strings or API keys

### How to Disable Telemetry

**Environment Variable:**
```bash
export AUTOMAGIK_SPARK_DISABLE_TELEMETRY=true
```

**CLI Commands:**
```bash
# Disable permanently
automagik-spark telemetry disable

# Check status
automagik-spark telemetry status

# See what data is collected
automagik-spark telemetry info

# Use --no-telemetry flag for single session
automagik-spark --no-telemetry <command>
```

**Opt-out File:**
```bash
touch ~/.automagik-no-telemetry
```

Telemetry is automatically disabled in CI/testing environments.

## πŸ—ΊοΈ Roadmap

Spark's future development focuses on:
- TBA

---

<p align="center">
  <b>Spark: Bringing AI Automation to Life</b>
</p>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/namastexlabs/automagik-spark",
    "name": "automagik-spark",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "automation, workflow, langflow, ai, llm",
    "author": "NamasteX Labs",
    "author_email": "Felipe Rosa <felipe@namastex.ai>, Cezar Vasconcelos <cezar@namastex.ai>",
    "download_url": "https://files.pythonhosted.org/packages/50/e8/ee5994b18e42bc5c88941995dc8ecc28721d35e5f37c3b133f2a5f513282/automagik_spark-0.3.7.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <img src=\".github/images/automagik_logo.png\" alt=\"Spark Logo\" width=\"600\"/>\n</p>\n\n# Spark\n\n> **Because magic shouldn't be complicated. **\n\nSpark is an automagion engine that seamlessly integrates with multiple [LangFlow](https://github.com/langflow-ai/langflow) instances. Deploy AI-driven flows, schedule one-time or recurring tasks, and monitor everything with minimal fuss\u2014no coding required.\n\n## \ud83d\udd17 Ecosystem\n\n- **[AutoMagik Agents](https://github.com/namastexlabs/automagik-agents)**: Develop production-level AI agents\n- **[AutoMagik UI](https://github.com/namastexlabs/automagik-ui)**: Create agents using natural language with our dedicated UI\n\n## \ud83d\ude80 Installation\n\nSpark provides two setup options:\n\n### Prerequisites\n\n- Linux-based system (Ubuntu/Debian recommended)\n- Docker and Docker Compose (automatically installed on Ubuntu/Debian if not present)\n\n### Local Production Setup\n\nFor a production-ready local environment:\n\n```bash\n./scripts/setup_local.sh\n```\n\n### Development Setup\n\nFor development with PostgreSQL and Redis Docker containers:\n\n```bash\n./scripts/setup_dev.sh\n```\n\n### What Happens During Setup\n\nBoth setup scripts will:\n- Create necessary environment files\n- Install Docker if needed (on Ubuntu/Debian)\n- Set up all required services\n- Install the CLI tool (optional)\n- Guide you through the entire process\n\n### After Installation\n\nYou'll have access to:\n- **Spark API**: Running at [http://localhost:8883](http://localhost:8883)\n- **PostgreSQL Database**: Available at `localhost:15432`\n- **Worker Service**: Running and ready to process tasks\n- **CLI Tool**: Installed (if chosen during setup)\n\n### Verifying Your Installation\n\nThe setup automatically verifies all services, but you can also check manually:\n\n```bash\n# Access API documentation\nopen http://localhost:8883/api/v1/docs  # Interactive Swagger UI\nopen http://localhost:8883/api/v1/redoc # ReDoc documentation\n\n# List flows (requires CLI installation)\nsource .venv/bin/activate\nautomagik-spark flow list\n```\n\n## \ud83e\udde9 System Components\n\n- **API Server**: Handles all HTTP requests and core logic\n- **Worker**: Processes tasks and schedules\n- **Database**: PostgreSQL with all required tables automatically created\n- **LangFlow** (optional): Visual flow editor for creating AI workflows\n- **CLI Tool** (optional): Command-line interface for managing flows and tasks\n\n## \ud83c\udfd7\ufe0f System Architecture\n\n```mermaid\nflowchart LR\n    subgraph Services\n      DB[PostgreSQL]\n      LF1[LangFlow Instance 1]\n      LF2[LangFlow Instance 2]\n    end\n    subgraph Spark\n      CLI[CLI]\n      API[API Server]\n      CW[Celery Worker]\n      W[Worker]\n    end\n    API -- uses --> DB\n    API -- triggers --> CW\n    W -- processes --> API\n    API -- integrates with --> LF1\n    API -- integrates with --> LF2\n    CLI -- controls --> API\n    API -- has UI --> UI[Automagik UI]\n```\n\n### Core Components Explained\n\n- **API**: Core service handling requests and business logic\n- **Worker**: Processes tasks and schedules\n- **CLI**: Command-line tool for managing flows and tasks\n- **PostgreSQL**: Stores flows, tasks, schedules, and other data\n- **LangFlow**: Optional service for creating and editing flows\n\n## \ud83d\udcda API Documentation\n\nFor complete API documentation, visit:\n- **Swagger UI**: [http://localhost:8883/api/v1/docs](http://localhost:8883/api/v1/docs)\n- **ReDoc**: [http://localhost:8883/api/v1/redoc](http://localhost:8883/api/v1/redoc)\n\n## \ud83d\udee0\ufe0f Next Steps\n\n1. If you installed LangFlow, visit [http://localhost:17860](http://localhost:17860) to create your first flow\n2. Use the API at [http://localhost:8883/api/v1/docs](http://localhost:8883/api/v1/docs) to manage your flows and tasks\n3. Try out the CLI commands with `automagik-spark --help`\n4. Monitor task execution through logs and API endpoints\n\n## \ud83d\udcca Telemetry\n\nSpark collects anonymous usage analytics to help improve the project. This data helps us understand which features are most useful and prioritize development efforts.\n\n### What We Collect\n- Command usage and performance metrics\n- API endpoint usage patterns\n- Workflow execution statistics\n- System information (OS, Python version)\n- Error rates and types\n\n### What We DON'T Collect\n- Personal information or credentials\n- Actual workflow data or content\n- File paths or environment variables\n- Database connection strings or API keys\n\n### How to Disable Telemetry\n\n**Environment Variable:**\n```bash\nexport AUTOMAGIK_SPARK_DISABLE_TELEMETRY=true\n```\n\n**CLI Commands:**\n```bash\n# Disable permanently\nautomagik-spark telemetry disable\n\n# Check status\nautomagik-spark telemetry status\n\n# See what data is collected\nautomagik-spark telemetry info\n\n# Use --no-telemetry flag for single session\nautomagik-spark --no-telemetry <command>\n```\n\n**Opt-out File:**\n```bash\ntouch ~/.automagik-no-telemetry\n```\n\nTelemetry is automatically disabled in CI/testing environments.\n\n## \ud83d\uddfa\ufe0f Roadmap\n\nSpark's future development focuses on:\n- TBA\n\n---\n\n<p align=\"center\">\n  <b>Spark: Bringing AI Automation to Life</b>\n</p>\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AutoMagik Spark - Automagion Engine with LangFlow integration",
    "version": "0.3.7",
    "project_urls": {
        "Bug Tracker": "https://github.com/namastexlabs/automagik-spark/issues",
        "Documentation": "https://github.com/namastexlabs/automagik-spark/tree/main/docs",
        "Homepage": "https://github.com/namastexlabs/automagik-spark",
        "Repository": "https://github.com/namastexlabs/automagik-spark"
    },
    "split_keywords": [
        "automation",
        " workflow",
        " langflow",
        " ai",
        " llm"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b34f281258e6df49bf2b8017da550eb92813ce67d20afef66370de6b62289018",
                "md5": "8f3cbe84cfd735158df840cba0bd1090",
                "sha256": "9bff7ebef5c086f5279b645c260652fcbda5f814dddb12aa12925b289c637979"
            },
            "downloads": -1,
            "filename": "automagik_spark-0.3.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8f3cbe84cfd735158df840cba0bd1090",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 104886,
            "upload_time": "2025-08-25T22:44:12",
            "upload_time_iso_8601": "2025-08-25T22:44:12.585585Z",
            "url": "https://files.pythonhosted.org/packages/b3/4f/281258e6df49bf2b8017da550eb92813ce67d20afef66370de6b62289018/automagik_spark-0.3.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "50e8ee5994b18e42bc5c88941995dc8ecc28721d35e5f37c3b133f2a5f513282",
                "md5": "bf270548708b5bb57838a184f6947187",
                "sha256": "5a6a1de115d137ece2df9a9a551bdadbc10e043ba950aff65d4be9a93987b3a9"
            },
            "downloads": -1,
            "filename": "automagik_spark-0.3.7.tar.gz",
            "has_sig": false,
            "md5_digest": "bf270548708b5bb57838a184f6947187",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 95171,
            "upload_time": "2025-08-25T22:44:14",
            "upload_time_iso_8601": "2025-08-25T22:44:14.600906Z",
            "url": "https://files.pythonhosted.org/packages/50/e8/ee5994b18e42bc5c88941995dc8ecc28721d35e5f37c3b133f2a5f513282/automagik_spark-0.3.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-25 22:44:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "namastexlabs",
    "github_project": "automagik-spark",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "automagik-spark"
}
        
Elapsed time: 1.73142s