# Automation Toolkit
基于uiautomator2的自动化测试工具包,提供设备控制、元素定位、图像识别等功能。
## 安装
```bash
pip install automation-toolkit
```
```text
版本更新说明:
0.1.9: 修复图像识别文字,混淆字识别
```
## 类初始化参数
```python
def __init__(self, device: str, img_path: str, task_id: str = None,
debug_img: str = None, sleep_time: int = 25, max_retries: int = 10,
is_sleep: bool = True, accidental_processing: list = None):
```
``` text
参数 类型 默认值 说明
device str - 设备标识(IP地址或序列号)
img_path str - 图片资源路径
task_id str None 任务标识符(可选)
debug_img str "./debug_images" 调试图片保存路径(可选)
sleep_time int 25 连接后等待时间(秒)
max_retries int 10 最大重试次数
is_sleep bool True 是否在连接后等待
accidental_processing list None 意外弹窗处理配置(可选)
```
## 主要功能方法
### 1. 设备连接与控制
```
_connect_device(max_retries: int) -> None
功能: 连接设备
参数:
max_retries - 最大重试次数
说明: 内部方法,用于建立设备连接
open_url(url: str, time_sleep: float = 0.5) -> None
功能: 打开URL
参数:
url - 要打开的URL
time_sleep - 操作后等待时间(默认0.5秒)
```
### 2. 虚拟按键操作
``` text
virtual_key(key: str, time_sleep: float = 1) -> None
功能: 模拟虚拟按键操作
参数:
key - 按键类型 ('back', 'delete', 'enter')
time_sleep - 操作后等待时间(默认1秒)
```
### 3. 滑动操作
``` text
swipe_direction(direction: str, scale: float = 0.9, times: int = 1, duration: float = 1.0, **kwargs) -> None
功能: 通用滑动方法
参数:
direction - 滑动方向 ('up', 'down', 'left', 'right')
scale - 滑动比例(默认0.9)
times - 滑动次数(默认1次)
duration - 滑动持续时间(默认1.0秒)
```
#### 便捷滑动方法
``` text
方法 功能 参数说明
up(scale=0.9, times=1, duration=1.0, **kwargs) 上滑操作 同上
down(scale=0.9, times=1, duration=1.0, **kwargs) 下滑操作 同上
left(scale=0.9, times=1, duration=1.0, **kwargs) 左滑操作 同上
right(scale=0.9, times=1, duration=1.0, **kwargs) 右滑操作 同上
swipe(start_x: int, start_y: int, end_x: int, end_y: int, steps: int = 70) -> None
功能: 自定义滑动
参数:
start_x, start_y - 起始坐标
end_x, end_y - 结束坐标
steps - 滑动步数(默认70)
```
### 4. 元素定位与操作
``` text
wait_until_element_found(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1) -> bool
功能: 等待元素出现
参数:
locator - 元素定位器 (定位类型, 定位值),如 ("id", "com.example.button")
max_retries - 最大重试次数(默认1次)
retry_interval - 重试间隔(默认1秒)
返回: bool - 是否找到元素
positioning_element_obj(locator: Tuple[str, str], max_retries: int = 1, report_error: int = 1) -> Optional[Any]
功能: 定位元素对象
参数:
locator - 元素定位器
max_retries - 最大重试次数
report_error - 错误报告级别 (1: 报错, 2: 不报错)
返回: 元素对象或None
click_element(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1, report_error: int = 1, click_type: int = 1, height_threshold: int = 1380, long_click: bool = False) -> bool
功能: 点击元素
参数:
locator - 元素定位器
max_retries - 最大重试次数
retry_interval - 点击后等待时间
report_error - 错误报告级别
click_type - 点击类型
height_threshold - 高度阈值
long_click - 是否长按
返回: bool - 是否点击成功
input_element(locator: Tuple[str, str], text: str, clear: bool = True, max_retries: int = 1, retry_interval: float = 1, report_error: int = 1) -> bool
功能: 输入文本到元素
参数:
locator - 元素定位器
text - 输入的文本
clear - 是否清空原文本(默认True)
max_retries - 最大重试次数
retry_interval - 输入后等待时间
report_error - 错误报告级别
返回: bool - 是否输入成功
send_keys(text: str, report_error: int = 1) -> bool
功能: 发送按键
参数:
text - 要输入的文本
report_error - 错误报告级别
返回: bool - 是否输入成功
```
### 5. 图像识别功能
```text
img_match(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.9, debug: bool = False, region: Tuple[int, int, int, int] = None, is_recursive_call: bool = False) -> Optional[Dict[str, Any]]
功能: 图像匹配(支持区域截图)
参数:
image_data - 图像数据(路径、numpy数组或PIL图像)
min_similarity - 最小相似度阈值(默认0.9)
debug - 是否调试模式(默认False)
region - 识别区域 (x1, y1, x2, y2)(默认全屏)
is_recursive_call - 是否为递归调用(内部使用)
返回: 匹配结果字典或None
返回字典结构:
```
```TEXT
{
"similarity": float, # 匹配相似度
"point": (x, y), # 设备坐标中心点
"match_area": (top_left, bottom_right), # 全屏坐标匹配区域
"screen_size": (width, height), # 设备屏幕尺寸
"region_offset": (x, y), # 区域偏移量
"region": region_tuple, # 识别区域
"relative_coords": { # 相对坐标信息
"relative_center": (x, y),
"relative_top_left": (x, y),
"relative_bottom_right": (x, y)
},
"template_adjusted": bool # 模板是否被调整过
}
```
``` text
img_click(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.8, offset_x: int = 0, offset_y: int = 0, debug: bool = False, region: Tuple[int, int, int, int] = None) -> bool
功能: 图像匹配并点击
参数:
image_data - 图像数据
min_similarity - 最小相似度阈值(默认0.8)
offset_x, offset_y - 点击坐标偏移量
debug - 是否调试模式
region - 识别区域
返回: bool - 是否点击成功
```
### 6. 颜色识别功能
``` text
detect_color_in_region(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, color_tolerance: int = 10, min_pixel_count: int = 1, debug: bool = False) -> Dict[str, Any]
功能: 识别指定区域内的特定颜色
参数:
target_color - 目标颜色 (R, G, B)
region - 识别区域 (x1, y1, x2, y2)(默认全屏)
color_tolerance - 颜色容差范围(默认10)
min_pixel_count - 最小像素数量阈值(默认1)
debug - 是否调试模式
返回: 识别结果字典
返回字典结构:
python
{
"pixel_count": int, # 匹配像素数量
"match_ratio": float, # 匹配比例
"meets_threshold": bool, # 是否满足阈值
"total_pixels_in_region": int, # 区域总像素数
"matched_coordinates": list, # 匹配坐标列表
"color_tolerance": int, # 颜色容差
"target_color_rgb": tuple, # 目标颜色RGB
"target_color_bgr": tuple, # 目标颜色BGR
"region": tuple # 识别区域
}
check_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, debug: bool = False) -> Union[Tuple[int, int], bool]
功能: 检查指定点的颜色是否与目标颜色一致
参数:
point - 要检查的坐标点 (x, y)
target_color - 目标颜色 (R, G, B)
color_tolerance - 颜色容差范围(默认5)
debug - 是否调试模式
返回: 如果颜色匹配返回坐标点 (x, y),否则返回 False
wait_for_color(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, min_pixel_count: int = 1, timeout: int = 3, check_interval: float = 1.0) -> bool
功能: 等待特定颜色出现
参数:
target_color - 目标颜色
region - 识别区域
min_pixel_count - 最小像素数量
timeout - 超时时间(秒,默认3秒)
check_interval - 检查间隔(默认1.0秒)
返回: bool - 是否在超时前找到颜色
wait_for_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, timeout: int = 10, check_interval: float = 1.0) -> Union[Tuple[int, int], bool]
功能: 等待指定点的颜色变为目标颜色
参数:
point - 要检查的坐标点
target_color - 目标颜色
color_tolerance - 颜色容差(默认5)
timeout - 超时时间(秒,默认10秒)
check_interval - 检查间隔(默认1.0秒)
返回: 超时前匹配成功返回坐标点,否则返回False
check_multiple_points_color(points: List[Tuple[int, int]], target_color: Tuple[int, int, int], color_tolerance: int = 5, require_all: bool = True) -> Dict[str, Any]
功能: 检查多个点的颜色
参数:
points - 要检查的坐标点列表
target_color - 目标颜色
color_tolerance - 颜色容差
require_all - 是否要求所有点都匹配(默认True)
返回: 包含检查结果的字典
get_point_color(point: Tuple[int, int], color_format: str = "RGB") -> Optional[Tuple[int, int, int]]
功能: 获取指定坐标点的颜色值
参数:
point - 要获取颜色的坐标点 (x, y)
color_format - 颜色格式 ("RGB" 或 "BGR",默认"RGB")
返回: 颜色值元组 (R, G, B) 或 (B, G, R),失败返回None
```
### 7. ADB命令操作
``` TEXT
u2_adb_shell(command: str) -> str
功能: 执行u2-ADB shell命令
参数: command - 要执行的命令
返回: 命令执行结果
adb_shell(command: str) -> str
功能: 执行原生ADB shell命令
参数: command - 要执行的命令
返回: 命令执行结果
支持常用按键:
3: Home键
4: 返回键
24: 音量+
25: 音量-
66: 回车键
111: ESC键等
```
### 8. 截图功能
``` TEXT
app_screenshot(name: str, path: str = None, region: Tuple[int, int, int, int] = None) -> str
功能: 截图并使用原子操作保存
参数:
name - 截图文件名
path - 保存路径(默认使用img_path)
region - 截图区域 (x1, y1, x2, y2)
返回: 截图保存路径
error_screenshot(path) -> None
功能: 错误截图保存
参数: path - 保存路径
```
### 9. 应用管理
``` TEXT
app_operations(operation: str, package_name: str, **kwargs) -> None
功能: 应用操作通用方法
参数:
operation - 操作类型 ('install', 'uninstall', 'stop', 'start')
package_name - 应用包名
支持操作:
'install': 安装应用
'uninstall': 卸载应用
'stop': 停止应用
'start': 启动应用
app_stop_all() -> None
功能: 停止所有应用
click_coordinate(x: int, y: int, time_sleep: float = 2) -> None
功能: 点击坐标
参数:
x, y - 点击坐标
time_sleep - 点击后等待时间(默认2秒)
```
## 意外弹窗处理
工具包支持配置意外弹窗自动处理:
```PYTHON
accidental_processing = [
{
"popup_images": "/path/to/popup1.png", # 弹窗识别图片(单个图片路径)
"close_button": "/path/to/close_btn.png", # 关闭按钮图片(可以是列表)
"max_attempts": 2 # 最大尝试次数
},
{
"popup_images": "/path/to/other_popup.png",
"close_button": ["/path/to/close1.png", "/path/to/close2.png"],
"max_attempts": 1
}
]
```
## 使用示例
``` PYTHON
# 初始化工具包
toolkit = AutomationToolkit(
device="127.0.0.1:5555",
img_path="./images",
task_id="test_task",
accidental_processing=accidental_processing
)
# 图像识别点击
toolkit.img_click("button.png", min_similarity=0.8)
# 元素定位点击
toolkit.click_element(("id", "com.example.button"), max_retries=3)
# 颜色检测
result = toolkit.detect_color_in_region(
target_color=(255, 0, 0),
region=(100, 100, 200, 200),
min_pixel_count=10
)
# 滑动操作
toolkit.swipe_direction("up", scale=0.8, times=2)
# 等待颜色出现
if toolkit.wait_for_color(
target_color=(0, 255, 0),
region=(50, 50, 100, 100),
timeout=5
):
print("目标颜色已出现")
# 应用操作
toolkit.app_operations("start", "com.example.app")
```
## 特性说明
``` TEXT
智能图像匹配: 支持模板尺寸自适应调整,自动处理大模板小区域情况
异常处理: 完善的错误处理和重试机制,支持多种错误报告级别
调试支持: 详细的日志记录和调试图像保存,便于问题排查
颜色识别: 精确的颜色检测和区域监控,支持多点检测
多元素支持: 支持定位和操作多个相同元素
原子操作: 截图等操作使用原子操作保证数据完整性
弹窗处理: 可配置的意外弹窗自动检测和处理机制
坐标转换: 自动处理屏幕分辨率差异和坐标转换
```
## 依赖库
``` TEXT
uiautomator2: 设备控制和UI自动化
opencv-python: 图像处理和模板匹配
Pillow: 图像处理
loguru: 日志记录
numpy: 数值计算
该工具包提供了完整的 Android 设备自动化测试解决方案,适用于各种 UI 自动化场景,特别适合游戏测试、应用自动化等功能测试需求。
```
## 找元素和找颜色的工具 uiautodev
``` text
命令行启动输入 uiauto.dev
```
Raw data
{
"_id": null,
"home_page": null,
"name": "automation-toolkit",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "automation, testing, uiautomator2, android, image-recognition",
"author": null,
"author_email": "\u767d_jiujiu <1138545214@qq.com>",
"download_url": "https://files.pythonhosted.org/packages/d8/28/7bac672b95b0f2ad0a5ee0eb7cc8b9f40ddd783960771d5cf0105f847eaa/automation_toolkit-0.1.9.tar.gz",
"platform": null,
"description": "# Automation Toolkit\r\n\r\n\u57fa\u4e8euiautomator2\u7684\u81ea\u52a8\u5316\u6d4b\u8bd5\u5de5\u5177\u5305\uff0c\u63d0\u4f9b\u8bbe\u5907\u63a7\u5236\u3001\u5143\u7d20\u5b9a\u4f4d\u3001\u56fe\u50cf\u8bc6\u522b\u7b49\u529f\u80fd\u3002\r\n\r\n## \u5b89\u88c5\r\n\r\n```bash\r\npip install automation-toolkit\r\n```\r\n\r\n```text\r\n\u7248\u672c\u66f4\u65b0\u8bf4\u660e\uff1a\r\n0.1.9: \u4fee\u590d\u56fe\u50cf\u8bc6\u522b\u6587\u5b57\uff0c\u6df7\u6dc6\u5b57\u8bc6\u522b\r\n```\r\n\r\n## \u7c7b\u521d\u59cb\u5316\u53c2\u6570\r\n```python\r\ndef __init__(self, device: str, img_path: str, task_id: str = None,\r\n debug_img: str = None, sleep_time: int = 25, max_retries: int = 10,\r\n is_sleep: bool = True, accidental_processing: list = None):\r\n```\r\n``` text\r\n\r\n\u53c2\u6570\t\u7c7b\u578b\t\u9ed8\u8ba4\u503c\t\u8bf4\u660e\r\ndevice\tstr\t-\t\u8bbe\u5907\u6807\u8bc6\uff08IP\u5730\u5740\u6216\u5e8f\u5217\u53f7\uff09\r\nimg_path\tstr\t-\t\u56fe\u7247\u8d44\u6e90\u8def\u5f84\r\ntask_id\tstr\tNone\t\u4efb\u52a1\u6807\u8bc6\u7b26\uff08\u53ef\u9009\uff09\r\ndebug_img\tstr\t\"./debug_images\"\t\u8c03\u8bd5\u56fe\u7247\u4fdd\u5b58\u8def\u5f84\uff08\u53ef\u9009\uff09\r\nsleep_time\tint\t25\t\u8fde\u63a5\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u79d2\uff09\r\nmax_retries\tint\t10\t\u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\nis_sleep\tbool\tTrue\t\u662f\u5426\u5728\u8fde\u63a5\u540e\u7b49\u5f85\r\naccidental_processing\tlist\tNone\t\u610f\u5916\u5f39\u7a97\u5904\u7406\u914d\u7f6e\uff08\u53ef\u9009\uff09\r\n```\r\n\r\n## \u4e3b\u8981\u529f\u80fd\u65b9\u6cd5\r\n### 1. \u8bbe\u5907\u8fde\u63a5\u4e0e\u63a7\u5236\r\n```\r\n_connect_device(max_retries: int) -> None\r\n\u529f\u80fd: \u8fde\u63a5\u8bbe\u5907\r\n\r\n\u53c2\u6570:\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\n\u8bf4\u660e: \u5185\u90e8\u65b9\u6cd5\uff0c\u7528\u4e8e\u5efa\u7acb\u8bbe\u5907\u8fde\u63a5\r\n\r\nopen_url(url: str, time_sleep: float = 0.5) -> None\r\n\u529f\u80fd: \u6253\u5f00URL\r\n\r\n\u53c2\u6570:\r\n\r\nurl - \u8981\u6253\u5f00\u7684URL\r\n\r\ntime_sleep - \u64cd\u4f5c\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u9ed8\u8ba40.5\u79d2\uff09\r\n```\r\n\r\n### 2. \u865a\u62df\u6309\u952e\u64cd\u4f5c\r\n``` text\r\nvirtual_key(key: str, time_sleep: float = 1) -> None\r\n\u529f\u80fd: \u6a21\u62df\u865a\u62df\u6309\u952e\u64cd\u4f5c\r\n\r\n\u53c2\u6570:\r\n\r\nkey - \u6309\u952e\u7c7b\u578b ('back', 'delete', 'enter')\r\n\r\ntime_sleep - \u64cd\u4f5c\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u9ed8\u8ba41\u79d2\uff09\r\n```\r\n### 3. \u6ed1\u52a8\u64cd\u4f5c\r\n``` text\r\nswipe_direction(direction: str, scale: float = 0.9, times: int = 1, duration: float = 1.0, **kwargs) -> None\r\n\u529f\u80fd: \u901a\u7528\u6ed1\u52a8\u65b9\u6cd5\r\n\r\n\u53c2\u6570:\r\n\r\ndirection - \u6ed1\u52a8\u65b9\u5411 ('up', 'down', 'left', 'right')\r\n\r\nscale - \u6ed1\u52a8\u6bd4\u4f8b\uff08\u9ed8\u8ba40.9\uff09\r\n\r\ntimes - \u6ed1\u52a8\u6b21\u6570\uff08\u9ed8\u8ba41\u6b21\uff09\r\n\r\nduration - \u6ed1\u52a8\u6301\u7eed\u65f6\u95f4\uff08\u9ed8\u8ba41.0\u79d2\uff09\r\n```\r\n#### \u4fbf\u6377\u6ed1\u52a8\u65b9\u6cd5\r\n``` text\r\n\r\n\u65b9\u6cd5\t\u529f\u80fd\t\u53c2\u6570\u8bf4\u660e\r\nup(scale=0.9, times=1, duration=1.0, **kwargs)\t\u4e0a\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\ndown(scale=0.9, times=1, duration=1.0, **kwargs)\t\u4e0b\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\nleft(scale=0.9, times=1, duration=1.0, **kwargs)\t\u5de6\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\nright(scale=0.9, times=1, duration=1.0, **kwargs)\t\u53f3\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\nswipe(start_x: int, start_y: int, end_x: int, end_y: int, steps: int = 70) -> None\r\n\u529f\u80fd: \u81ea\u5b9a\u4e49\u6ed1\u52a8\r\n\r\n\u53c2\u6570:\r\n\r\nstart_x, start_y - \u8d77\u59cb\u5750\u6807\r\n\r\nend_x, end_y - \u7ed3\u675f\u5750\u6807\r\n\r\nsteps - \u6ed1\u52a8\u6b65\u6570\uff08\u9ed8\u8ba470\uff09\r\n```\r\n\r\n### 4. \u5143\u7d20\u5b9a\u4f4d\u4e0e\u64cd\u4f5c\r\n``` text\r\nwait_until_element_found(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1) -> bool\r\n\u529f\u80fd: \u7b49\u5f85\u5143\u7d20\u51fa\u73b0\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668 (\u5b9a\u4f4d\u7c7b\u578b, \u5b9a\u4f4d\u503c)\uff0c\u5982 (\"id\", \"com.example.button\")\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\uff08\u9ed8\u8ba41\u6b21\uff09\r\n\r\nretry_interval - \u91cd\u8bd5\u95f4\u9694\uff08\u9ed8\u8ba41\u79d2\uff09\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u627e\u5230\u5143\u7d20\r\n\r\npositioning_element_obj(locator: Tuple[str, str], max_retries: int = 1, report_error: int = 1) -> Optional[Any]\r\n\u529f\u80fd: \u5b9a\u4f4d\u5143\u7d20\u5bf9\u8c61\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b (1: \u62a5\u9519, 2: \u4e0d\u62a5\u9519)\r\n\r\n\u8fd4\u56de: \u5143\u7d20\u5bf9\u8c61\u6216None\r\n\r\nclick_element(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1, report_error: int = 1, click_type: int = 1, height_threshold: int = 1380, long_click: bool = False) -> bool\r\n\u529f\u80fd: \u70b9\u51fb\u5143\u7d20\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\nretry_interval - \u70b9\u51fb\u540e\u7b49\u5f85\u65f6\u95f4\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\nclick_type - \u70b9\u51fb\u7c7b\u578b\r\n\r\nheight_threshold - \u9ad8\u5ea6\u9608\u503c\r\n\r\nlong_click - \u662f\u5426\u957f\u6309\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u70b9\u51fb\u6210\u529f\r\n\r\ninput_element(locator: Tuple[str, str], text: str, clear: bool = True, max_retries: int = 1, retry_interval: float = 1, report_error: int = 1) -> bool\r\n\u529f\u80fd: \u8f93\u5165\u6587\u672c\u5230\u5143\u7d20\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668\r\n\r\ntext - \u8f93\u5165\u7684\u6587\u672c\r\n\r\nclear - \u662f\u5426\u6e05\u7a7a\u539f\u6587\u672c\uff08\u9ed8\u8ba4True\uff09\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\nretry_interval - \u8f93\u5165\u540e\u7b49\u5f85\u65f6\u95f4\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u8f93\u5165\u6210\u529f\r\n\r\nsend_keys(text: str, report_error: int = 1) -> bool\r\n\u529f\u80fd: \u53d1\u9001\u6309\u952e\r\n\r\n\u53c2\u6570:\r\n\r\ntext - \u8981\u8f93\u5165\u7684\u6587\u672c\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u8f93\u5165\u6210\u529f\r\n```\r\n\r\n### 5. \u56fe\u50cf\u8bc6\u522b\u529f\u80fd\r\n```text\r\nimg_match(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.9, debug: bool = False, region: Tuple[int, int, int, int] = None, is_recursive_call: bool = False) -> Optional[Dict[str, Any]]\r\n\r\n\u529f\u80fd: \u56fe\u50cf\u5339\u914d\uff08\u652f\u6301\u533a\u57df\u622a\u56fe\uff09\r\n\r\n\u53c2\u6570:\r\n\r\nimage_data - \u56fe\u50cf\u6570\u636e\uff08\u8def\u5f84\u3001numpy\u6570\u7ec4\u6216PIL\u56fe\u50cf\uff09\r\n\r\nmin_similarity - \u6700\u5c0f\u76f8\u4f3c\u5ea6\u9608\u503c\uff08\u9ed8\u8ba40.9\uff09\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\uff08\u9ed8\u8ba4False\uff09\r\n\r\nregion - \u8bc6\u522b\u533a\u57df (x1, y1, x2, y2)\uff08\u9ed8\u8ba4\u5168\u5c4f\uff09\r\n\r\nis_recursive_call - \u662f\u5426\u4e3a\u9012\u5f52\u8c03\u7528\uff08\u5185\u90e8\u4f7f\u7528\uff09\r\n\r\n\u8fd4\u56de: \u5339\u914d\u7ed3\u679c\u5b57\u5178\u6216None\r\n\r\n\u8fd4\u56de\u5b57\u5178\u7ed3\u6784:\r\n```\r\n```TEXT\r\n{\r\n \"similarity\": float, # \u5339\u914d\u76f8\u4f3c\u5ea6\r\n \"point\": (x, y), # \u8bbe\u5907\u5750\u6807\u4e2d\u5fc3\u70b9\r\n \"match_area\": (top_left, bottom_right), # \u5168\u5c4f\u5750\u6807\u5339\u914d\u533a\u57df\r\n \"screen_size\": (width, height), # \u8bbe\u5907\u5c4f\u5e55\u5c3a\u5bf8\r\n \"region_offset\": (x, y), # \u533a\u57df\u504f\u79fb\u91cf\r\n \"region\": region_tuple, # \u8bc6\u522b\u533a\u57df\r\n \"relative_coords\": { # \u76f8\u5bf9\u5750\u6807\u4fe1\u606f\r\n \"relative_center\": (x, y),\r\n \"relative_top_left\": (x, y),\r\n \"relative_bottom_right\": (x, y)\r\n },\r\n \"template_adjusted\": bool # \u6a21\u677f\u662f\u5426\u88ab\u8c03\u6574\u8fc7\r\n}\r\n```\r\n\r\n``` text\r\nimg_click(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.8, offset_x: int = 0, offset_y: int = 0, debug: bool = False, region: Tuple[int, int, int, int] = None) -> bool\r\n\u529f\u80fd: \u56fe\u50cf\u5339\u914d\u5e76\u70b9\u51fb\r\n\r\n\u53c2\u6570:\r\n\r\nimage_data - \u56fe\u50cf\u6570\u636e\r\n\r\nmin_similarity - \u6700\u5c0f\u76f8\u4f3c\u5ea6\u9608\u503c\uff08\u9ed8\u8ba40.8\uff09\r\n\r\noffset_x, offset_y - \u70b9\u51fb\u5750\u6807\u504f\u79fb\u91cf\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\r\n\r\nregion - \u8bc6\u522b\u533a\u57df\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u70b9\u51fb\u6210\u529f\r\n```\r\n\r\n### 6. \u989c\u8272\u8bc6\u522b\u529f\u80fd\r\n``` text\r\ndetect_color_in_region(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, color_tolerance: int = 10, min_pixel_count: int = 1, debug: bool = False) -> Dict[str, Any]\r\n\u529f\u80fd: \u8bc6\u522b\u6307\u5b9a\u533a\u57df\u5185\u7684\u7279\u5b9a\u989c\u8272\r\n\r\n\u53c2\u6570:\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272 (R, G, B)\r\n\r\nregion - \u8bc6\u522b\u533a\u57df (x1, y1, x2, y2)\uff08\u9ed8\u8ba4\u5168\u5c4f\uff09\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\u8303\u56f4\uff08\u9ed8\u8ba410\uff09\r\n\r\nmin_pixel_count - \u6700\u5c0f\u50cf\u7d20\u6570\u91cf\u9608\u503c\uff08\u9ed8\u8ba41\uff09\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\r\n\r\n\u8fd4\u56de: \u8bc6\u522b\u7ed3\u679c\u5b57\u5178\r\n\r\n\u8fd4\u56de\u5b57\u5178\u7ed3\u6784:\r\n\r\npython\r\n{\r\n \"pixel_count\": int, # \u5339\u914d\u50cf\u7d20\u6570\u91cf\r\n \"match_ratio\": float, # \u5339\u914d\u6bd4\u4f8b\r\n \"meets_threshold\": bool, # \u662f\u5426\u6ee1\u8db3\u9608\u503c\r\n \"total_pixels_in_region\": int, # \u533a\u57df\u603b\u50cf\u7d20\u6570\r\n \"matched_coordinates\": list, # \u5339\u914d\u5750\u6807\u5217\u8868\r\n \"color_tolerance\": int, # \u989c\u8272\u5bb9\u5dee\r\n \"target_color_rgb\": tuple, # \u76ee\u6807\u989c\u8272RGB\r\n \"target_color_bgr\": tuple, # \u76ee\u6807\u989c\u8272BGR\r\n \"region\": tuple # \u8bc6\u522b\u533a\u57df\r\n}\r\ncheck_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, debug: bool = False) -> Union[Tuple[int, int], bool]\r\n\u529f\u80fd: \u68c0\u67e5\u6307\u5b9a\u70b9\u7684\u989c\u8272\u662f\u5426\u4e0e\u76ee\u6807\u989c\u8272\u4e00\u81f4\r\n\r\n\u53c2\u6570:\r\n\r\npoint - \u8981\u68c0\u67e5\u7684\u5750\u6807\u70b9 (x, y)\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272 (R, G, B)\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\u8303\u56f4\uff08\u9ed8\u8ba45\uff09\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\r\n\r\n\u8fd4\u56de: \u5982\u679c\u989c\u8272\u5339\u914d\u8fd4\u56de\u5750\u6807\u70b9 (x, y)\uff0c\u5426\u5219\u8fd4\u56de False\r\n\r\nwait_for_color(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, min_pixel_count: int = 1, timeout: int = 3, check_interval: float = 1.0) -> bool\r\n\u529f\u80fd: \u7b49\u5f85\u7279\u5b9a\u989c\u8272\u51fa\u73b0\r\n\r\n\u53c2\u6570:\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272\r\n\r\nregion - \u8bc6\u522b\u533a\u57df\r\n\r\nmin_pixel_count - \u6700\u5c0f\u50cf\u7d20\u6570\u91cf\r\n\r\ntimeout - \u8d85\u65f6\u65f6\u95f4\uff08\u79d2\uff0c\u9ed8\u8ba43\u79d2\uff09\r\n\r\ncheck_interval - \u68c0\u67e5\u95f4\u9694\uff08\u9ed8\u8ba41.0\u79d2\uff09\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u5728\u8d85\u65f6\u524d\u627e\u5230\u989c\u8272\r\n\r\nwait_for_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, timeout: int = 10, check_interval: float = 1.0) -> Union[Tuple[int, int], bool]\r\n\u529f\u80fd: \u7b49\u5f85\u6307\u5b9a\u70b9\u7684\u989c\u8272\u53d8\u4e3a\u76ee\u6807\u989c\u8272\r\n\r\n\u53c2\u6570:\r\n\r\npoint - \u8981\u68c0\u67e5\u7684\u5750\u6807\u70b9\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\uff08\u9ed8\u8ba45\uff09\r\n\r\ntimeout - \u8d85\u65f6\u65f6\u95f4\uff08\u79d2\uff0c\u9ed8\u8ba410\u79d2\uff09\r\n\r\ncheck_interval - \u68c0\u67e5\u95f4\u9694\uff08\u9ed8\u8ba41.0\u79d2\uff09\r\n\r\n\u8fd4\u56de: \u8d85\u65f6\u524d\u5339\u914d\u6210\u529f\u8fd4\u56de\u5750\u6807\u70b9\uff0c\u5426\u5219\u8fd4\u56deFalse\r\n\r\ncheck_multiple_points_color(points: List[Tuple[int, int]], target_color: Tuple[int, int, int], color_tolerance: int = 5, require_all: bool = True) -> Dict[str, Any]\r\n\u529f\u80fd: \u68c0\u67e5\u591a\u4e2a\u70b9\u7684\u989c\u8272\r\n\r\n\u53c2\u6570:\r\n\r\npoints - \u8981\u68c0\u67e5\u7684\u5750\u6807\u70b9\u5217\u8868\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\r\n\r\nrequire_all - \u662f\u5426\u8981\u6c42\u6240\u6709\u70b9\u90fd\u5339\u914d\uff08\u9ed8\u8ba4True\uff09\r\n\r\n\u8fd4\u56de: \u5305\u542b\u68c0\u67e5\u7ed3\u679c\u7684\u5b57\u5178\r\n\r\nget_point_color(point: Tuple[int, int], color_format: str = \"RGB\") -> Optional[Tuple[int, int, int]]\r\n\u529f\u80fd: \u83b7\u53d6\u6307\u5b9a\u5750\u6807\u70b9\u7684\u989c\u8272\u503c\r\n\r\n\u53c2\u6570:\r\n\r\npoint - \u8981\u83b7\u53d6\u989c\u8272\u7684\u5750\u6807\u70b9 (x, y)\r\n\r\ncolor_format - \u989c\u8272\u683c\u5f0f (\"RGB\" \u6216 \"BGR\"\uff0c\u9ed8\u8ba4\"RGB\")\r\n\r\n\u8fd4\u56de: \u989c\u8272\u503c\u5143\u7ec4 (R, G, B) \u6216 (B, G, R)\uff0c\u5931\u8d25\u8fd4\u56deNone\r\n```\r\n\r\n### 7. ADB\u547d\u4ee4\u64cd\u4f5c\r\n``` TEXT\r\nu2_adb_shell(command: str) -> str\r\n\u529f\u80fd: \u6267\u884cu2-ADB shell\u547d\u4ee4\r\n\r\n\u53c2\u6570: command - \u8981\u6267\u884c\u7684\u547d\u4ee4\r\n\r\n\u8fd4\u56de: \u547d\u4ee4\u6267\u884c\u7ed3\u679c\r\n\r\nadb_shell(command: str) -> str\r\n\u529f\u80fd: \u6267\u884c\u539f\u751fADB shell\u547d\u4ee4\r\n\r\n\u53c2\u6570: command - \u8981\u6267\u884c\u7684\u547d\u4ee4\r\n\r\n\u8fd4\u56de: \u547d\u4ee4\u6267\u884c\u7ed3\u679c\r\n\r\n\u652f\u6301\u5e38\u7528\u6309\u952e:\r\n\r\n3: Home\u952e\r\n\r\n4: \u8fd4\u56de\u952e\r\n\r\n24: \u97f3\u91cf+\r\n\r\n25: \u97f3\u91cf-\r\n\r\n66: \u56de\u8f66\u952e\r\n\r\n111: ESC\u952e\u7b49\r\n```\r\n\r\n### 8. \u622a\u56fe\u529f\u80fd\r\n``` TEXT\r\napp_screenshot(name: str, path: str = None, region: Tuple[int, int, int, int] = None) -> str\r\n\u529f\u80fd: \u622a\u56fe\u5e76\u4f7f\u7528\u539f\u5b50\u64cd\u4f5c\u4fdd\u5b58\r\n\r\n\u53c2\u6570:\r\n\r\nname - \u622a\u56fe\u6587\u4ef6\u540d\r\n\r\npath - \u4fdd\u5b58\u8def\u5f84\uff08\u9ed8\u8ba4\u4f7f\u7528img_path\uff09\r\n\r\nregion - \u622a\u56fe\u533a\u57df (x1, y1, x2, y2)\r\n\r\n\u8fd4\u56de: \u622a\u56fe\u4fdd\u5b58\u8def\u5f84\r\n\r\nerror_screenshot(path) -> None\r\n\u529f\u80fd: \u9519\u8bef\u622a\u56fe\u4fdd\u5b58\r\n\r\n\u53c2\u6570: path - \u4fdd\u5b58\u8def\u5f84\r\n```\r\n\r\n### 9. \u5e94\u7528\u7ba1\u7406\r\n``` TEXT\r\napp_operations(operation: str, package_name: str, **kwargs) -> None\r\n\u529f\u80fd: \u5e94\u7528\u64cd\u4f5c\u901a\u7528\u65b9\u6cd5\r\n\r\n\u53c2\u6570:\r\n\r\noperation - \u64cd\u4f5c\u7c7b\u578b ('install', 'uninstall', 'stop', 'start')\r\n\r\npackage_name - \u5e94\u7528\u5305\u540d\r\n\r\n\u652f\u6301\u64cd\u4f5c:\r\n\r\n'install': \u5b89\u88c5\u5e94\u7528\r\n\r\n'uninstall': \u5378\u8f7d\u5e94\u7528\r\n\r\n'stop': \u505c\u6b62\u5e94\u7528\r\n\r\n'start': \u542f\u52a8\u5e94\u7528\r\n\r\napp_stop_all() -> None\r\n\u529f\u80fd: \u505c\u6b62\u6240\u6709\u5e94\u7528\r\n\r\nclick_coordinate(x: int, y: int, time_sleep: float = 2) -> None\r\n\u529f\u80fd: \u70b9\u51fb\u5750\u6807\r\n\r\n\u53c2\u6570:\r\n\r\nx, y - \u70b9\u51fb\u5750\u6807\r\n\r\ntime_sleep - \u70b9\u51fb\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u9ed8\u8ba42\u79d2\uff09\r\n```\r\n\r\n## \u610f\u5916\u5f39\u7a97\u5904\u7406\r\n\u5de5\u5177\u5305\u652f\u6301\u914d\u7f6e\u610f\u5916\u5f39\u7a97\u81ea\u52a8\u5904\u7406\uff1a\r\n```PYTHON\r\naccidental_processing = [\r\n {\r\n \"popup_images\": \"/path/to/popup1.png\", # \u5f39\u7a97\u8bc6\u522b\u56fe\u7247\uff08\u5355\u4e2a\u56fe\u7247\u8def\u5f84\uff09\r\n \"close_button\": \"/path/to/close_btn.png\", # \u5173\u95ed\u6309\u94ae\u56fe\u7247\uff08\u53ef\u4ee5\u662f\u5217\u8868\uff09\r\n \"max_attempts\": 2 # \u6700\u5927\u5c1d\u8bd5\u6b21\u6570\r\n },\r\n {\r\n \"popup_images\": \"/path/to/other_popup.png\",\r\n \"close_button\": [\"/path/to/close1.png\", \"/path/to/close2.png\"],\r\n \"max_attempts\": 1\r\n }\r\n]\r\n```\r\n\r\n## \u4f7f\u7528\u793a\u4f8b\r\n``` PYTHON\r\n# \u521d\u59cb\u5316\u5de5\u5177\u5305\r\ntoolkit = AutomationToolkit(\r\n device=\"127.0.0.1:5555\",\r\n img_path=\"./images\",\r\n task_id=\"test_task\",\r\n accidental_processing=accidental_processing\r\n)\r\n\r\n# \u56fe\u50cf\u8bc6\u522b\u70b9\u51fb\r\ntoolkit.img_click(\"button.png\", min_similarity=0.8)\r\n\r\n# \u5143\u7d20\u5b9a\u4f4d\u70b9\u51fb\r\ntoolkit.click_element((\"id\", \"com.example.button\"), max_retries=3)\r\n\r\n# \u989c\u8272\u68c0\u6d4b\r\nresult = toolkit.detect_color_in_region(\r\n target_color=(255, 0, 0),\r\n region=(100, 100, 200, 200),\r\n min_pixel_count=10\r\n)\r\n\r\n# \u6ed1\u52a8\u64cd\u4f5c\r\ntoolkit.swipe_direction(\"up\", scale=0.8, times=2)\r\n\r\n# \u7b49\u5f85\u989c\u8272\u51fa\u73b0\r\nif toolkit.wait_for_color(\r\n target_color=(0, 255, 0),\r\n region=(50, 50, 100, 100),\r\n timeout=5\r\n):\r\n print(\"\u76ee\u6807\u989c\u8272\u5df2\u51fa\u73b0\")\r\n\r\n# \u5e94\u7528\u64cd\u4f5c\r\ntoolkit.app_operations(\"start\", \"com.example.app\")\r\n```\r\n## \u7279\u6027\u8bf4\u660e\r\n``` TEXT\r\n\u667a\u80fd\u56fe\u50cf\u5339\u914d: \u652f\u6301\u6a21\u677f\u5c3a\u5bf8\u81ea\u9002\u5e94\u8c03\u6574\uff0c\u81ea\u52a8\u5904\u7406\u5927\u6a21\u677f\u5c0f\u533a\u57df\u60c5\u51b5\r\n\r\n\u5f02\u5e38\u5904\u7406: \u5b8c\u5584\u7684\u9519\u8bef\u5904\u7406\u548c\u91cd\u8bd5\u673a\u5236\uff0c\u652f\u6301\u591a\u79cd\u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\n\u8c03\u8bd5\u652f\u6301: \u8be6\u7ec6\u7684\u65e5\u5fd7\u8bb0\u5f55\u548c\u8c03\u8bd5\u56fe\u50cf\u4fdd\u5b58\uff0c\u4fbf\u4e8e\u95ee\u9898\u6392\u67e5\r\n\r\n\u989c\u8272\u8bc6\u522b: \u7cbe\u786e\u7684\u989c\u8272\u68c0\u6d4b\u548c\u533a\u57df\u76d1\u63a7\uff0c\u652f\u6301\u591a\u70b9\u68c0\u6d4b\r\n\r\n\u591a\u5143\u7d20\u652f\u6301: \u652f\u6301\u5b9a\u4f4d\u548c\u64cd\u4f5c\u591a\u4e2a\u76f8\u540c\u5143\u7d20\r\n\r\n\u539f\u5b50\u64cd\u4f5c: \u622a\u56fe\u7b49\u64cd\u4f5c\u4f7f\u7528\u539f\u5b50\u64cd\u4f5c\u4fdd\u8bc1\u6570\u636e\u5b8c\u6574\u6027\r\n\r\n\u5f39\u7a97\u5904\u7406: \u53ef\u914d\u7f6e\u7684\u610f\u5916\u5f39\u7a97\u81ea\u52a8\u68c0\u6d4b\u548c\u5904\u7406\u673a\u5236\r\n\r\n\u5750\u6807\u8f6c\u6362: \u81ea\u52a8\u5904\u7406\u5c4f\u5e55\u5206\u8fa8\u7387\u5dee\u5f02\u548c\u5750\u6807\u8f6c\u6362\r\n```\r\n\r\n## \u4f9d\u8d56\u5e93\r\n``` TEXT\r\nuiautomator2: \u8bbe\u5907\u63a7\u5236\u548cUI\u81ea\u52a8\u5316\r\n\r\nopencv-python: \u56fe\u50cf\u5904\u7406\u548c\u6a21\u677f\u5339\u914d\r\n\r\nPillow: \u56fe\u50cf\u5904\u7406\r\n\r\nloguru: \u65e5\u5fd7\u8bb0\u5f55\r\n\r\nnumpy: \u6570\u503c\u8ba1\u7b97\r\n\r\n\u8be5\u5de5\u5177\u5305\u63d0\u4f9b\u4e86\u5b8c\u6574\u7684 Android \u8bbe\u5907\u81ea\u52a8\u5316\u6d4b\u8bd5\u89e3\u51b3\u65b9\u6848\uff0c\u9002\u7528\u4e8e\u5404\u79cd UI \u81ea\u52a8\u5316\u573a\u666f\uff0c\u7279\u522b\u9002\u5408\u6e38\u620f\u6d4b\u8bd5\u3001\u5e94\u7528\u81ea\u52a8\u5316\u7b49\u529f\u80fd\u6d4b\u8bd5\u9700\u6c42\u3002\r\n```\r\n\r\n## \u627e\u5143\u7d20\u548c\u627e\u989c\u8272\u7684\u5de5\u5177 uiautodev\r\n\r\n``` text\r\n\u547d\u4ee4\u884c\u542f\u52a8\u8f93\u5165 uiauto.dev\r\n```\r\n",
"bugtrack_url": null,
"license": null,
"summary": "\u57fa\u4e8euiautomator2\u7684\u81ea\u52a8\u5316\u6d4b\u8bd5\u5de5\u5177\u5305",
"version": "0.1.9",
"project_urls": {
"Bug Reports": "https://gitee.com/jiujiu315480/automation_toolkit.git/issues",
"Source": "https://gitee.com/jiujiu315480/automation_toolkit.git"
},
"split_keywords": [
"automation",
" testing",
" uiautomator2",
" android",
" image-recognition"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c041bc49ac7db725b9c5be71f49e2cf4071e2b86e6c1468d3ae921a47ce76508",
"md5": "0f92dacb5e4d3557e0b07feb8fecc519",
"sha256": "f48361f85aa2945765530587d2b3ee619d036ebd13c9a1734141c3af9770bb8f"
},
"downloads": -1,
"filename": "automation_toolkit-0.1.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0f92dacb5e4d3557e0b07feb8fecc519",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 27714,
"upload_time": "2025-10-25T02:03:44",
"upload_time_iso_8601": "2025-10-25T02:03:44.713062Z",
"url": "https://files.pythonhosted.org/packages/c0/41/bc49ac7db725b9c5be71f49e2cf4071e2b86e6c1468d3ae921a47ce76508/automation_toolkit-0.1.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d8287bac672b95b0f2ad0a5ee0eb7cc8b9f40ddd783960771d5cf0105f847eaa",
"md5": "b3e6f0deb953f40d35b25798896d9e71",
"sha256": "20880b9564c162ad16cd2c3de1f8ac610e6523fcf5e5353bc007a76f5f919171"
},
"downloads": -1,
"filename": "automation_toolkit-0.1.9.tar.gz",
"has_sig": false,
"md5_digest": "b3e6f0deb953f40d35b25798896d9e71",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 31558,
"upload_time": "2025-10-25T02:03:46",
"upload_time_iso_8601": "2025-10-25T02:03:46.196726Z",
"url": "https://files.pythonhosted.org/packages/d8/28/7bac672b95b0f2ad0a5ee0eb7cc8b9f40ddd783960771d5cf0105f847eaa/automation_toolkit-0.1.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-25 02:03:46",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "automation-toolkit"
}