automation-toolkit


Nameautomation-toolkit JSON
Version 0.1.9 PyPI version JSON
download
home_pageNone
Summary基于uiautomator2的自动化测试工具包
upload_time2025-10-25 02:03:46
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords automation testing uiautomator2 android image-recognition
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Automation Toolkit

基于uiautomator2的自动化测试工具包,提供设备控制、元素定位、图像识别等功能。

## 安装

```bash
pip install automation-toolkit
```

```text
版本更新说明:
0.1.9: 修复图像识别文字,混淆字识别
```

## 类初始化参数
```python
def __init__(self, device: str, img_path: str, task_id: str = None,
             debug_img: str = None, sleep_time: int = 25, max_retries: int = 10,
             is_sleep: bool = True, accidental_processing: list = None):
```
``` text

参数	类型	默认值	说明
device	str	-	设备标识(IP地址或序列号)
img_path	str	-	图片资源路径
task_id	str	None	任务标识符(可选)
debug_img	str	"./debug_images"	调试图片保存路径(可选)
sleep_time	int	25	连接后等待时间(秒)
max_retries	int	10	最大重试次数
is_sleep	bool	True	是否在连接后等待
accidental_processing	list	None	意外弹窗处理配置(可选)
```

## 主要功能方法
### 1. 设备连接与控制
```
_connect_device(max_retries: int) -> None
功能: 连接设备

参数:

max_retries - 最大重试次数

说明: 内部方法,用于建立设备连接

open_url(url: str, time_sleep: float = 0.5) -> None
功能: 打开URL

参数:

url - 要打开的URL

time_sleep - 操作后等待时间(默认0.5秒)
```

### 2. 虚拟按键操作
``` text
virtual_key(key: str, time_sleep: float = 1) -> None
功能: 模拟虚拟按键操作

参数:

key - 按键类型 ('back', 'delete', 'enter')

time_sleep - 操作后等待时间(默认1秒)
```
### 3. 滑动操作
``` text
swipe_direction(direction: str, scale: float = 0.9, times: int = 1, duration: float = 1.0, **kwargs) -> None
功能: 通用滑动方法

参数:

direction - 滑动方向 ('up', 'down', 'left', 'right')

scale - 滑动比例(默认0.9)

times - 滑动次数(默认1次)

duration - 滑动持续时间(默认1.0秒)
```
#### 便捷滑动方法
``` text

方法	功能	参数说明
up(scale=0.9, times=1, duration=1.0, **kwargs)	上滑操作	同上
down(scale=0.9, times=1, duration=1.0, **kwargs)	下滑操作	同上
left(scale=0.9, times=1, duration=1.0, **kwargs)	左滑操作	同上
right(scale=0.9, times=1, duration=1.0, **kwargs)	右滑操作	同上
swipe(start_x: int, start_y: int, end_x: int, end_y: int, steps: int = 70) -> None
功能: 自定义滑动

参数:

start_x, start_y - 起始坐标

end_x, end_y - 结束坐标

steps - 滑动步数(默认70)
```

### 4. 元素定位与操作
``` text
wait_until_element_found(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1) -> bool
功能: 等待元素出现

参数:

locator - 元素定位器 (定位类型, 定位值),如 ("id", "com.example.button")

max_retries - 最大重试次数(默认1次)

retry_interval - 重试间隔(默认1秒)

返回: bool - 是否找到元素

positioning_element_obj(locator: Tuple[str, str], max_retries: int = 1, report_error: int = 1) -> Optional[Any]
功能: 定位元素对象

参数:

locator - 元素定位器

max_retries - 最大重试次数

report_error - 错误报告级别 (1: 报错, 2: 不报错)

返回: 元素对象或None

click_element(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1, report_error: int = 1, click_type: int = 1, height_threshold: int = 1380, long_click: bool = False) -> bool
功能: 点击元素

参数:

locator - 元素定位器

max_retries - 最大重试次数

retry_interval - 点击后等待时间

report_error - 错误报告级别

click_type - 点击类型

height_threshold - 高度阈值

long_click - 是否长按

返回: bool - 是否点击成功

input_element(locator: Tuple[str, str], text: str, clear: bool = True, max_retries: int = 1, retry_interval: float = 1, report_error: int = 1) -> bool
功能: 输入文本到元素

参数:

locator - 元素定位器

text - 输入的文本

clear - 是否清空原文本(默认True)

max_retries - 最大重试次数

retry_interval - 输入后等待时间

report_error - 错误报告级别

返回: bool - 是否输入成功

send_keys(text: str, report_error: int = 1) -> bool
功能: 发送按键

参数:

text - 要输入的文本

report_error - 错误报告级别

返回: bool - 是否输入成功
```

### 5. 图像识别功能
```text
img_match(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.9, debug: bool = False, region: Tuple[int, int, int, int] = None, is_recursive_call: bool = False) -> Optional[Dict[str, Any]]

功能: 图像匹配(支持区域截图)

参数:

image_data - 图像数据(路径、numpy数组或PIL图像)

min_similarity - 最小相似度阈值(默认0.9)

debug - 是否调试模式(默认False)

region - 识别区域 (x1, y1, x2, y2)(默认全屏)

is_recursive_call - 是否为递归调用(内部使用)

返回: 匹配结果字典或None

返回字典结构:
```
```TEXT
{
    "similarity": float,           # 匹配相似度
    "point": (x, y),              # 设备坐标中心点
    "match_area": (top_left, bottom_right),  # 全屏坐标匹配区域
    "screen_size": (width, height), # 设备屏幕尺寸
    "region_offset": (x, y),       # 区域偏移量
    "region": region_tuple,        # 识别区域
    "relative_coords": {           # 相对坐标信息
        "relative_center": (x, y),
        "relative_top_left": (x, y),
        "relative_bottom_right": (x, y)
    },
    "template_adjusted": bool      # 模板是否被调整过
}
```

``` text
img_click(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.8, offset_x: int = 0, offset_y: int = 0, debug: bool = False, region: Tuple[int, int, int, int] = None) -> bool
功能: 图像匹配并点击

参数:

image_data - 图像数据

min_similarity - 最小相似度阈值(默认0.8)

offset_x, offset_y - 点击坐标偏移量

debug - 是否调试模式

region - 识别区域

返回: bool - 是否点击成功
```

### 6. 颜色识别功能
``` text
detect_color_in_region(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, color_tolerance: int = 10, min_pixel_count: int = 1, debug: bool = False) -> Dict[str, Any]
功能: 识别指定区域内的特定颜色

参数:

target_color - 目标颜色 (R, G, B)

region - 识别区域 (x1, y1, x2, y2)(默认全屏)

color_tolerance - 颜色容差范围(默认10)

min_pixel_count - 最小像素数量阈值(默认1)

debug - 是否调试模式

返回: 识别结果字典

返回字典结构:

python
{
    "pixel_count": int,           # 匹配像素数量
    "match_ratio": float,         # 匹配比例
    "meets_threshold": bool,      # 是否满足阈值
    "total_pixels_in_region": int, # 区域总像素数
    "matched_coordinates": list,  # 匹配坐标列表
    "color_tolerance": int,       # 颜色容差
    "target_color_rgb": tuple,    # 目标颜色RGB
    "target_color_bgr": tuple,    # 目标颜色BGR
    "region": tuple              # 识别区域
}
check_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, debug: bool = False) -> Union[Tuple[int, int], bool]
功能: 检查指定点的颜色是否与目标颜色一致

参数:

point - 要检查的坐标点 (x, y)

target_color - 目标颜色 (R, G, B)

color_tolerance - 颜色容差范围(默认5)

debug - 是否调试模式

返回: 如果颜色匹配返回坐标点 (x, y),否则返回 False

wait_for_color(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, min_pixel_count: int = 1, timeout: int = 3, check_interval: float = 1.0) -> bool
功能: 等待特定颜色出现

参数:

target_color - 目标颜色

region - 识别区域

min_pixel_count - 最小像素数量

timeout - 超时时间(秒,默认3秒)

check_interval - 检查间隔(默认1.0秒)

返回: bool - 是否在超时前找到颜色

wait_for_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, timeout: int = 10, check_interval: float = 1.0) -> Union[Tuple[int, int], bool]
功能: 等待指定点的颜色变为目标颜色

参数:

point - 要检查的坐标点

target_color - 目标颜色

color_tolerance - 颜色容差(默认5)

timeout - 超时时间(秒,默认10秒)

check_interval - 检查间隔(默认1.0秒)

返回: 超时前匹配成功返回坐标点,否则返回False

check_multiple_points_color(points: List[Tuple[int, int]], target_color: Tuple[int, int, int], color_tolerance: int = 5, require_all: bool = True) -> Dict[str, Any]
功能: 检查多个点的颜色

参数:

points - 要检查的坐标点列表

target_color - 目标颜色

color_tolerance - 颜色容差

require_all - 是否要求所有点都匹配(默认True)

返回: 包含检查结果的字典

get_point_color(point: Tuple[int, int], color_format: str = "RGB") -> Optional[Tuple[int, int, int]]
功能: 获取指定坐标点的颜色值

参数:

point - 要获取颜色的坐标点 (x, y)

color_format - 颜色格式 ("RGB" 或 "BGR",默认"RGB")

返回: 颜色值元组 (R, G, B) 或 (B, G, R),失败返回None
```

### 7. ADB命令操作
``` TEXT
u2_adb_shell(command: str) -> str
功能: 执行u2-ADB shell命令

参数: command - 要执行的命令

返回: 命令执行结果

adb_shell(command: str) -> str
功能: 执行原生ADB shell命令

参数: command - 要执行的命令

返回: 命令执行结果

支持常用按键:

3: Home键

4: 返回键

24: 音量+

25: 音量-

66: 回车键

111: ESC键等
```

### 8. 截图功能
``` TEXT
app_screenshot(name: str, path: str = None, region: Tuple[int, int, int, int] = None) -> str
功能: 截图并使用原子操作保存

参数:

name - 截图文件名

path - 保存路径(默认使用img_path)

region - 截图区域 (x1, y1, x2, y2)

返回: 截图保存路径

error_screenshot(path) -> None
功能: 错误截图保存

参数: path - 保存路径
```

### 9. 应用管理
``` TEXT
app_operations(operation: str, package_name: str, **kwargs) -> None
功能: 应用操作通用方法

参数:

operation - 操作类型 ('install', 'uninstall', 'stop', 'start')

package_name - 应用包名

支持操作:

'install': 安装应用

'uninstall': 卸载应用

'stop': 停止应用

'start': 启动应用

app_stop_all() -> None
功能: 停止所有应用

click_coordinate(x: int, y: int, time_sleep: float = 2) -> None
功能: 点击坐标

参数:

x, y - 点击坐标

time_sleep - 点击后等待时间(默认2秒)
```

## 意外弹窗处理
工具包支持配置意外弹窗自动处理:
```PYTHON
accidental_processing = [
    {
        "popup_images": "/path/to/popup1.png",  # 弹窗识别图片(单个图片路径)
        "close_button": "/path/to/close_btn.png",  # 关闭按钮图片(可以是列表)
        "max_attempts": 2  # 最大尝试次数
    },
    {
        "popup_images": "/path/to/other_popup.png",
        "close_button": ["/path/to/close1.png", "/path/to/close2.png"],
        "max_attempts": 1
    }
]
```

## 使用示例
``` PYTHON
# 初始化工具包
toolkit = AutomationToolkit(
    device="127.0.0.1:5555",
    img_path="./images",
    task_id="test_task",
    accidental_processing=accidental_processing
)

# 图像识别点击
toolkit.img_click("button.png", min_similarity=0.8)

# 元素定位点击
toolkit.click_element(("id", "com.example.button"), max_retries=3)

# 颜色检测
result = toolkit.detect_color_in_region(
    target_color=(255, 0, 0),
    region=(100, 100, 200, 200),
    min_pixel_count=10
)

# 滑动操作
toolkit.swipe_direction("up", scale=0.8, times=2)

# 等待颜色出现
if toolkit.wait_for_color(
    target_color=(0, 255, 0),
    region=(50, 50, 100, 100),
    timeout=5
):
    print("目标颜色已出现")

# 应用操作
toolkit.app_operations("start", "com.example.app")
```
## 特性说明
``` TEXT
智能图像匹配: 支持模板尺寸自适应调整,自动处理大模板小区域情况

异常处理: 完善的错误处理和重试机制,支持多种错误报告级别

调试支持: 详细的日志记录和调试图像保存,便于问题排查

颜色识别: 精确的颜色检测和区域监控,支持多点检测

多元素支持: 支持定位和操作多个相同元素

原子操作: 截图等操作使用原子操作保证数据完整性

弹窗处理: 可配置的意外弹窗自动检测和处理机制

坐标转换: 自动处理屏幕分辨率差异和坐标转换
```

## 依赖库
``` TEXT
uiautomator2: 设备控制和UI自动化

opencv-python: 图像处理和模板匹配

Pillow: 图像处理

loguru: 日志记录

numpy: 数值计算

该工具包提供了完整的 Android 设备自动化测试解决方案,适用于各种 UI 自动化场景,特别适合游戏测试、应用自动化等功能测试需求。
```

## 找元素和找颜色的工具 uiautodev

``` text
命令行启动输入 uiauto.dev
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "automation-toolkit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "automation, testing, uiautomator2, android, image-recognition",
    "author": null,
    "author_email": "\u767d_jiujiu <1138545214@qq.com>",
    "download_url": "https://files.pythonhosted.org/packages/d8/28/7bac672b95b0f2ad0a5ee0eb7cc8b9f40ddd783960771d5cf0105f847eaa/automation_toolkit-0.1.9.tar.gz",
    "platform": null,
    "description": "# Automation Toolkit\r\n\r\n\u57fa\u4e8euiautomator2\u7684\u81ea\u52a8\u5316\u6d4b\u8bd5\u5de5\u5177\u5305\uff0c\u63d0\u4f9b\u8bbe\u5907\u63a7\u5236\u3001\u5143\u7d20\u5b9a\u4f4d\u3001\u56fe\u50cf\u8bc6\u522b\u7b49\u529f\u80fd\u3002\r\n\r\n## \u5b89\u88c5\r\n\r\n```bash\r\npip install automation-toolkit\r\n```\r\n\r\n```text\r\n\u7248\u672c\u66f4\u65b0\u8bf4\u660e\uff1a\r\n0.1.9: \u4fee\u590d\u56fe\u50cf\u8bc6\u522b\u6587\u5b57\uff0c\u6df7\u6dc6\u5b57\u8bc6\u522b\r\n```\r\n\r\n## \u7c7b\u521d\u59cb\u5316\u53c2\u6570\r\n```python\r\ndef __init__(self, device: str, img_path: str, task_id: str = None,\r\n             debug_img: str = None, sleep_time: int = 25, max_retries: int = 10,\r\n             is_sleep: bool = True, accidental_processing: list = None):\r\n```\r\n``` text\r\n\r\n\u53c2\u6570\t\u7c7b\u578b\t\u9ed8\u8ba4\u503c\t\u8bf4\u660e\r\ndevice\tstr\t-\t\u8bbe\u5907\u6807\u8bc6\uff08IP\u5730\u5740\u6216\u5e8f\u5217\u53f7\uff09\r\nimg_path\tstr\t-\t\u56fe\u7247\u8d44\u6e90\u8def\u5f84\r\ntask_id\tstr\tNone\t\u4efb\u52a1\u6807\u8bc6\u7b26\uff08\u53ef\u9009\uff09\r\ndebug_img\tstr\t\"./debug_images\"\t\u8c03\u8bd5\u56fe\u7247\u4fdd\u5b58\u8def\u5f84\uff08\u53ef\u9009\uff09\r\nsleep_time\tint\t25\t\u8fde\u63a5\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u79d2\uff09\r\nmax_retries\tint\t10\t\u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\nis_sleep\tbool\tTrue\t\u662f\u5426\u5728\u8fde\u63a5\u540e\u7b49\u5f85\r\naccidental_processing\tlist\tNone\t\u610f\u5916\u5f39\u7a97\u5904\u7406\u914d\u7f6e\uff08\u53ef\u9009\uff09\r\n```\r\n\r\n## \u4e3b\u8981\u529f\u80fd\u65b9\u6cd5\r\n### 1. \u8bbe\u5907\u8fde\u63a5\u4e0e\u63a7\u5236\r\n```\r\n_connect_device(max_retries: int) -> None\r\n\u529f\u80fd: \u8fde\u63a5\u8bbe\u5907\r\n\r\n\u53c2\u6570:\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\n\u8bf4\u660e: \u5185\u90e8\u65b9\u6cd5\uff0c\u7528\u4e8e\u5efa\u7acb\u8bbe\u5907\u8fde\u63a5\r\n\r\nopen_url(url: str, time_sleep: float = 0.5) -> None\r\n\u529f\u80fd: \u6253\u5f00URL\r\n\r\n\u53c2\u6570:\r\n\r\nurl - \u8981\u6253\u5f00\u7684URL\r\n\r\ntime_sleep - \u64cd\u4f5c\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u9ed8\u8ba40.5\u79d2\uff09\r\n```\r\n\r\n### 2. \u865a\u62df\u6309\u952e\u64cd\u4f5c\r\n``` text\r\nvirtual_key(key: str, time_sleep: float = 1) -> None\r\n\u529f\u80fd: \u6a21\u62df\u865a\u62df\u6309\u952e\u64cd\u4f5c\r\n\r\n\u53c2\u6570:\r\n\r\nkey - \u6309\u952e\u7c7b\u578b ('back', 'delete', 'enter')\r\n\r\ntime_sleep - \u64cd\u4f5c\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u9ed8\u8ba41\u79d2\uff09\r\n```\r\n### 3. \u6ed1\u52a8\u64cd\u4f5c\r\n``` text\r\nswipe_direction(direction: str, scale: float = 0.9, times: int = 1, duration: float = 1.0, **kwargs) -> None\r\n\u529f\u80fd: \u901a\u7528\u6ed1\u52a8\u65b9\u6cd5\r\n\r\n\u53c2\u6570:\r\n\r\ndirection - \u6ed1\u52a8\u65b9\u5411 ('up', 'down', 'left', 'right')\r\n\r\nscale - \u6ed1\u52a8\u6bd4\u4f8b\uff08\u9ed8\u8ba40.9\uff09\r\n\r\ntimes - \u6ed1\u52a8\u6b21\u6570\uff08\u9ed8\u8ba41\u6b21\uff09\r\n\r\nduration - \u6ed1\u52a8\u6301\u7eed\u65f6\u95f4\uff08\u9ed8\u8ba41.0\u79d2\uff09\r\n```\r\n#### \u4fbf\u6377\u6ed1\u52a8\u65b9\u6cd5\r\n``` text\r\n\r\n\u65b9\u6cd5\t\u529f\u80fd\t\u53c2\u6570\u8bf4\u660e\r\nup(scale=0.9, times=1, duration=1.0, **kwargs)\t\u4e0a\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\ndown(scale=0.9, times=1, duration=1.0, **kwargs)\t\u4e0b\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\nleft(scale=0.9, times=1, duration=1.0, **kwargs)\t\u5de6\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\nright(scale=0.9, times=1, duration=1.0, **kwargs)\t\u53f3\u6ed1\u64cd\u4f5c\t\u540c\u4e0a\r\nswipe(start_x: int, start_y: int, end_x: int, end_y: int, steps: int = 70) -> None\r\n\u529f\u80fd: \u81ea\u5b9a\u4e49\u6ed1\u52a8\r\n\r\n\u53c2\u6570:\r\n\r\nstart_x, start_y - \u8d77\u59cb\u5750\u6807\r\n\r\nend_x, end_y - \u7ed3\u675f\u5750\u6807\r\n\r\nsteps - \u6ed1\u52a8\u6b65\u6570\uff08\u9ed8\u8ba470\uff09\r\n```\r\n\r\n### 4. \u5143\u7d20\u5b9a\u4f4d\u4e0e\u64cd\u4f5c\r\n``` text\r\nwait_until_element_found(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1) -> bool\r\n\u529f\u80fd: \u7b49\u5f85\u5143\u7d20\u51fa\u73b0\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668 (\u5b9a\u4f4d\u7c7b\u578b, \u5b9a\u4f4d\u503c)\uff0c\u5982 (\"id\", \"com.example.button\")\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\uff08\u9ed8\u8ba41\u6b21\uff09\r\n\r\nretry_interval - \u91cd\u8bd5\u95f4\u9694\uff08\u9ed8\u8ba41\u79d2\uff09\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u627e\u5230\u5143\u7d20\r\n\r\npositioning_element_obj(locator: Tuple[str, str], max_retries: int = 1, report_error: int = 1) -> Optional[Any]\r\n\u529f\u80fd: \u5b9a\u4f4d\u5143\u7d20\u5bf9\u8c61\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b (1: \u62a5\u9519, 2: \u4e0d\u62a5\u9519)\r\n\r\n\u8fd4\u56de: \u5143\u7d20\u5bf9\u8c61\u6216None\r\n\r\nclick_element(locator: Tuple[str, str], max_retries: int = 1, retry_interval: float = 1, report_error: int = 1, click_type: int = 1, height_threshold: int = 1380, long_click: bool = False) -> bool\r\n\u529f\u80fd: \u70b9\u51fb\u5143\u7d20\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\nretry_interval - \u70b9\u51fb\u540e\u7b49\u5f85\u65f6\u95f4\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\nclick_type - \u70b9\u51fb\u7c7b\u578b\r\n\r\nheight_threshold - \u9ad8\u5ea6\u9608\u503c\r\n\r\nlong_click - \u662f\u5426\u957f\u6309\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u70b9\u51fb\u6210\u529f\r\n\r\ninput_element(locator: Tuple[str, str], text: str, clear: bool = True, max_retries: int = 1, retry_interval: float = 1, report_error: int = 1) -> bool\r\n\u529f\u80fd: \u8f93\u5165\u6587\u672c\u5230\u5143\u7d20\r\n\r\n\u53c2\u6570:\r\n\r\nlocator - \u5143\u7d20\u5b9a\u4f4d\u5668\r\n\r\ntext - \u8f93\u5165\u7684\u6587\u672c\r\n\r\nclear - \u662f\u5426\u6e05\u7a7a\u539f\u6587\u672c\uff08\u9ed8\u8ba4True\uff09\r\n\r\nmax_retries - \u6700\u5927\u91cd\u8bd5\u6b21\u6570\r\n\r\nretry_interval - \u8f93\u5165\u540e\u7b49\u5f85\u65f6\u95f4\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u8f93\u5165\u6210\u529f\r\n\r\nsend_keys(text: str, report_error: int = 1) -> bool\r\n\u529f\u80fd: \u53d1\u9001\u6309\u952e\r\n\r\n\u53c2\u6570:\r\n\r\ntext - \u8981\u8f93\u5165\u7684\u6587\u672c\r\n\r\nreport_error - \u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u8f93\u5165\u6210\u529f\r\n```\r\n\r\n### 5. \u56fe\u50cf\u8bc6\u522b\u529f\u80fd\r\n```text\r\nimg_match(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.9, debug: bool = False, region: Tuple[int, int, int, int] = None, is_recursive_call: bool = False) -> Optional[Dict[str, Any]]\r\n\r\n\u529f\u80fd: \u56fe\u50cf\u5339\u914d\uff08\u652f\u6301\u533a\u57df\u622a\u56fe\uff09\r\n\r\n\u53c2\u6570:\r\n\r\nimage_data - \u56fe\u50cf\u6570\u636e\uff08\u8def\u5f84\u3001numpy\u6570\u7ec4\u6216PIL\u56fe\u50cf\uff09\r\n\r\nmin_similarity - \u6700\u5c0f\u76f8\u4f3c\u5ea6\u9608\u503c\uff08\u9ed8\u8ba40.9\uff09\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\uff08\u9ed8\u8ba4False\uff09\r\n\r\nregion - \u8bc6\u522b\u533a\u57df (x1, y1, x2, y2)\uff08\u9ed8\u8ba4\u5168\u5c4f\uff09\r\n\r\nis_recursive_call - \u662f\u5426\u4e3a\u9012\u5f52\u8c03\u7528\uff08\u5185\u90e8\u4f7f\u7528\uff09\r\n\r\n\u8fd4\u56de: \u5339\u914d\u7ed3\u679c\u5b57\u5178\u6216None\r\n\r\n\u8fd4\u56de\u5b57\u5178\u7ed3\u6784:\r\n```\r\n```TEXT\r\n{\r\n    \"similarity\": float,           # \u5339\u914d\u76f8\u4f3c\u5ea6\r\n    \"point\": (x, y),              # \u8bbe\u5907\u5750\u6807\u4e2d\u5fc3\u70b9\r\n    \"match_area\": (top_left, bottom_right),  # \u5168\u5c4f\u5750\u6807\u5339\u914d\u533a\u57df\r\n    \"screen_size\": (width, height), # \u8bbe\u5907\u5c4f\u5e55\u5c3a\u5bf8\r\n    \"region_offset\": (x, y),       # \u533a\u57df\u504f\u79fb\u91cf\r\n    \"region\": region_tuple,        # \u8bc6\u522b\u533a\u57df\r\n    \"relative_coords\": {           # \u76f8\u5bf9\u5750\u6807\u4fe1\u606f\r\n        \"relative_center\": (x, y),\r\n        \"relative_top_left\": (x, y),\r\n        \"relative_bottom_right\": (x, y)\r\n    },\r\n    \"template_adjusted\": bool      # \u6a21\u677f\u662f\u5426\u88ab\u8c03\u6574\u8fc7\r\n}\r\n```\r\n\r\n``` text\r\nimg_click(image_data: Union[str, np.ndarray, Image.Image], min_similarity: float = 0.8, offset_x: int = 0, offset_y: int = 0, debug: bool = False, region: Tuple[int, int, int, int] = None) -> bool\r\n\u529f\u80fd: \u56fe\u50cf\u5339\u914d\u5e76\u70b9\u51fb\r\n\r\n\u53c2\u6570:\r\n\r\nimage_data - \u56fe\u50cf\u6570\u636e\r\n\r\nmin_similarity - \u6700\u5c0f\u76f8\u4f3c\u5ea6\u9608\u503c\uff08\u9ed8\u8ba40.8\uff09\r\n\r\noffset_x, offset_y - \u70b9\u51fb\u5750\u6807\u504f\u79fb\u91cf\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\r\n\r\nregion - \u8bc6\u522b\u533a\u57df\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u70b9\u51fb\u6210\u529f\r\n```\r\n\r\n### 6. \u989c\u8272\u8bc6\u522b\u529f\u80fd\r\n``` text\r\ndetect_color_in_region(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, color_tolerance: int = 10, min_pixel_count: int = 1, debug: bool = False) -> Dict[str, Any]\r\n\u529f\u80fd: \u8bc6\u522b\u6307\u5b9a\u533a\u57df\u5185\u7684\u7279\u5b9a\u989c\u8272\r\n\r\n\u53c2\u6570:\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272 (R, G, B)\r\n\r\nregion - \u8bc6\u522b\u533a\u57df (x1, y1, x2, y2)\uff08\u9ed8\u8ba4\u5168\u5c4f\uff09\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\u8303\u56f4\uff08\u9ed8\u8ba410\uff09\r\n\r\nmin_pixel_count - \u6700\u5c0f\u50cf\u7d20\u6570\u91cf\u9608\u503c\uff08\u9ed8\u8ba41\uff09\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\r\n\r\n\u8fd4\u56de: \u8bc6\u522b\u7ed3\u679c\u5b57\u5178\r\n\r\n\u8fd4\u56de\u5b57\u5178\u7ed3\u6784:\r\n\r\npython\r\n{\r\n    \"pixel_count\": int,           # \u5339\u914d\u50cf\u7d20\u6570\u91cf\r\n    \"match_ratio\": float,         # \u5339\u914d\u6bd4\u4f8b\r\n    \"meets_threshold\": bool,      # \u662f\u5426\u6ee1\u8db3\u9608\u503c\r\n    \"total_pixels_in_region\": int, # \u533a\u57df\u603b\u50cf\u7d20\u6570\r\n    \"matched_coordinates\": list,  # \u5339\u914d\u5750\u6807\u5217\u8868\r\n    \"color_tolerance\": int,       # \u989c\u8272\u5bb9\u5dee\r\n    \"target_color_rgb\": tuple,    # \u76ee\u6807\u989c\u8272RGB\r\n    \"target_color_bgr\": tuple,    # \u76ee\u6807\u989c\u8272BGR\r\n    \"region\": tuple              # \u8bc6\u522b\u533a\u57df\r\n}\r\ncheck_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, debug: bool = False) -> Union[Tuple[int, int], bool]\r\n\u529f\u80fd: \u68c0\u67e5\u6307\u5b9a\u70b9\u7684\u989c\u8272\u662f\u5426\u4e0e\u76ee\u6807\u989c\u8272\u4e00\u81f4\r\n\r\n\u53c2\u6570:\r\n\r\npoint - \u8981\u68c0\u67e5\u7684\u5750\u6807\u70b9 (x, y)\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272 (R, G, B)\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\u8303\u56f4\uff08\u9ed8\u8ba45\uff09\r\n\r\ndebug - \u662f\u5426\u8c03\u8bd5\u6a21\u5f0f\r\n\r\n\u8fd4\u56de: \u5982\u679c\u989c\u8272\u5339\u914d\u8fd4\u56de\u5750\u6807\u70b9 (x, y)\uff0c\u5426\u5219\u8fd4\u56de False\r\n\r\nwait_for_color(target_color: Tuple[int, int, int], region: Tuple[int, int, int, int] = None, min_pixel_count: int = 1, timeout: int = 3, check_interval: float = 1.0) -> bool\r\n\u529f\u80fd: \u7b49\u5f85\u7279\u5b9a\u989c\u8272\u51fa\u73b0\r\n\r\n\u53c2\u6570:\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272\r\n\r\nregion - \u8bc6\u522b\u533a\u57df\r\n\r\nmin_pixel_count - \u6700\u5c0f\u50cf\u7d20\u6570\u91cf\r\n\r\ntimeout - \u8d85\u65f6\u65f6\u95f4\uff08\u79d2\uff0c\u9ed8\u8ba43\u79d2\uff09\r\n\r\ncheck_interval - \u68c0\u67e5\u95f4\u9694\uff08\u9ed8\u8ba41.0\u79d2\uff09\r\n\r\n\u8fd4\u56de: bool - \u662f\u5426\u5728\u8d85\u65f6\u524d\u627e\u5230\u989c\u8272\r\n\r\nwait_for_point_color(point: Tuple[int, int], target_color: Tuple[int, int, int], color_tolerance: int = 5, timeout: int = 10, check_interval: float = 1.0) -> Union[Tuple[int, int], bool]\r\n\u529f\u80fd: \u7b49\u5f85\u6307\u5b9a\u70b9\u7684\u989c\u8272\u53d8\u4e3a\u76ee\u6807\u989c\u8272\r\n\r\n\u53c2\u6570:\r\n\r\npoint - \u8981\u68c0\u67e5\u7684\u5750\u6807\u70b9\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\uff08\u9ed8\u8ba45\uff09\r\n\r\ntimeout - \u8d85\u65f6\u65f6\u95f4\uff08\u79d2\uff0c\u9ed8\u8ba410\u79d2\uff09\r\n\r\ncheck_interval - \u68c0\u67e5\u95f4\u9694\uff08\u9ed8\u8ba41.0\u79d2\uff09\r\n\r\n\u8fd4\u56de: \u8d85\u65f6\u524d\u5339\u914d\u6210\u529f\u8fd4\u56de\u5750\u6807\u70b9\uff0c\u5426\u5219\u8fd4\u56deFalse\r\n\r\ncheck_multiple_points_color(points: List[Tuple[int, int]], target_color: Tuple[int, int, int], color_tolerance: int = 5, require_all: bool = True) -> Dict[str, Any]\r\n\u529f\u80fd: \u68c0\u67e5\u591a\u4e2a\u70b9\u7684\u989c\u8272\r\n\r\n\u53c2\u6570:\r\n\r\npoints - \u8981\u68c0\u67e5\u7684\u5750\u6807\u70b9\u5217\u8868\r\n\r\ntarget_color - \u76ee\u6807\u989c\u8272\r\n\r\ncolor_tolerance - \u989c\u8272\u5bb9\u5dee\r\n\r\nrequire_all - \u662f\u5426\u8981\u6c42\u6240\u6709\u70b9\u90fd\u5339\u914d\uff08\u9ed8\u8ba4True\uff09\r\n\r\n\u8fd4\u56de: \u5305\u542b\u68c0\u67e5\u7ed3\u679c\u7684\u5b57\u5178\r\n\r\nget_point_color(point: Tuple[int, int], color_format: str = \"RGB\") -> Optional[Tuple[int, int, int]]\r\n\u529f\u80fd: \u83b7\u53d6\u6307\u5b9a\u5750\u6807\u70b9\u7684\u989c\u8272\u503c\r\n\r\n\u53c2\u6570:\r\n\r\npoint - \u8981\u83b7\u53d6\u989c\u8272\u7684\u5750\u6807\u70b9 (x, y)\r\n\r\ncolor_format - \u989c\u8272\u683c\u5f0f (\"RGB\" \u6216 \"BGR\"\uff0c\u9ed8\u8ba4\"RGB\")\r\n\r\n\u8fd4\u56de: \u989c\u8272\u503c\u5143\u7ec4 (R, G, B) \u6216 (B, G, R)\uff0c\u5931\u8d25\u8fd4\u56deNone\r\n```\r\n\r\n### 7. ADB\u547d\u4ee4\u64cd\u4f5c\r\n``` TEXT\r\nu2_adb_shell(command: str) -> str\r\n\u529f\u80fd: \u6267\u884cu2-ADB shell\u547d\u4ee4\r\n\r\n\u53c2\u6570: command - \u8981\u6267\u884c\u7684\u547d\u4ee4\r\n\r\n\u8fd4\u56de: \u547d\u4ee4\u6267\u884c\u7ed3\u679c\r\n\r\nadb_shell(command: str) -> str\r\n\u529f\u80fd: \u6267\u884c\u539f\u751fADB shell\u547d\u4ee4\r\n\r\n\u53c2\u6570: command - \u8981\u6267\u884c\u7684\u547d\u4ee4\r\n\r\n\u8fd4\u56de: \u547d\u4ee4\u6267\u884c\u7ed3\u679c\r\n\r\n\u652f\u6301\u5e38\u7528\u6309\u952e:\r\n\r\n3: Home\u952e\r\n\r\n4: \u8fd4\u56de\u952e\r\n\r\n24: \u97f3\u91cf+\r\n\r\n25: \u97f3\u91cf-\r\n\r\n66: \u56de\u8f66\u952e\r\n\r\n111: ESC\u952e\u7b49\r\n```\r\n\r\n### 8. \u622a\u56fe\u529f\u80fd\r\n``` TEXT\r\napp_screenshot(name: str, path: str = None, region: Tuple[int, int, int, int] = None) -> str\r\n\u529f\u80fd: \u622a\u56fe\u5e76\u4f7f\u7528\u539f\u5b50\u64cd\u4f5c\u4fdd\u5b58\r\n\r\n\u53c2\u6570:\r\n\r\nname - \u622a\u56fe\u6587\u4ef6\u540d\r\n\r\npath - \u4fdd\u5b58\u8def\u5f84\uff08\u9ed8\u8ba4\u4f7f\u7528img_path\uff09\r\n\r\nregion - \u622a\u56fe\u533a\u57df (x1, y1, x2, y2)\r\n\r\n\u8fd4\u56de: \u622a\u56fe\u4fdd\u5b58\u8def\u5f84\r\n\r\nerror_screenshot(path) -> None\r\n\u529f\u80fd: \u9519\u8bef\u622a\u56fe\u4fdd\u5b58\r\n\r\n\u53c2\u6570: path - \u4fdd\u5b58\u8def\u5f84\r\n```\r\n\r\n### 9. \u5e94\u7528\u7ba1\u7406\r\n``` TEXT\r\napp_operations(operation: str, package_name: str, **kwargs) -> None\r\n\u529f\u80fd: \u5e94\u7528\u64cd\u4f5c\u901a\u7528\u65b9\u6cd5\r\n\r\n\u53c2\u6570:\r\n\r\noperation - \u64cd\u4f5c\u7c7b\u578b ('install', 'uninstall', 'stop', 'start')\r\n\r\npackage_name - \u5e94\u7528\u5305\u540d\r\n\r\n\u652f\u6301\u64cd\u4f5c:\r\n\r\n'install': \u5b89\u88c5\u5e94\u7528\r\n\r\n'uninstall': \u5378\u8f7d\u5e94\u7528\r\n\r\n'stop': \u505c\u6b62\u5e94\u7528\r\n\r\n'start': \u542f\u52a8\u5e94\u7528\r\n\r\napp_stop_all() -> None\r\n\u529f\u80fd: \u505c\u6b62\u6240\u6709\u5e94\u7528\r\n\r\nclick_coordinate(x: int, y: int, time_sleep: float = 2) -> None\r\n\u529f\u80fd: \u70b9\u51fb\u5750\u6807\r\n\r\n\u53c2\u6570:\r\n\r\nx, y - \u70b9\u51fb\u5750\u6807\r\n\r\ntime_sleep - \u70b9\u51fb\u540e\u7b49\u5f85\u65f6\u95f4\uff08\u9ed8\u8ba42\u79d2\uff09\r\n```\r\n\r\n## \u610f\u5916\u5f39\u7a97\u5904\u7406\r\n\u5de5\u5177\u5305\u652f\u6301\u914d\u7f6e\u610f\u5916\u5f39\u7a97\u81ea\u52a8\u5904\u7406\uff1a\r\n```PYTHON\r\naccidental_processing = [\r\n    {\r\n        \"popup_images\": \"/path/to/popup1.png\",  # \u5f39\u7a97\u8bc6\u522b\u56fe\u7247\uff08\u5355\u4e2a\u56fe\u7247\u8def\u5f84\uff09\r\n        \"close_button\": \"/path/to/close_btn.png\",  # \u5173\u95ed\u6309\u94ae\u56fe\u7247\uff08\u53ef\u4ee5\u662f\u5217\u8868\uff09\r\n        \"max_attempts\": 2  # \u6700\u5927\u5c1d\u8bd5\u6b21\u6570\r\n    },\r\n    {\r\n        \"popup_images\": \"/path/to/other_popup.png\",\r\n        \"close_button\": [\"/path/to/close1.png\", \"/path/to/close2.png\"],\r\n        \"max_attempts\": 1\r\n    }\r\n]\r\n```\r\n\r\n## \u4f7f\u7528\u793a\u4f8b\r\n``` PYTHON\r\n# \u521d\u59cb\u5316\u5de5\u5177\u5305\r\ntoolkit = AutomationToolkit(\r\n    device=\"127.0.0.1:5555\",\r\n    img_path=\"./images\",\r\n    task_id=\"test_task\",\r\n    accidental_processing=accidental_processing\r\n)\r\n\r\n# \u56fe\u50cf\u8bc6\u522b\u70b9\u51fb\r\ntoolkit.img_click(\"button.png\", min_similarity=0.8)\r\n\r\n# \u5143\u7d20\u5b9a\u4f4d\u70b9\u51fb\r\ntoolkit.click_element((\"id\", \"com.example.button\"), max_retries=3)\r\n\r\n# \u989c\u8272\u68c0\u6d4b\r\nresult = toolkit.detect_color_in_region(\r\n    target_color=(255, 0, 0),\r\n    region=(100, 100, 200, 200),\r\n    min_pixel_count=10\r\n)\r\n\r\n# \u6ed1\u52a8\u64cd\u4f5c\r\ntoolkit.swipe_direction(\"up\", scale=0.8, times=2)\r\n\r\n# \u7b49\u5f85\u989c\u8272\u51fa\u73b0\r\nif toolkit.wait_for_color(\r\n    target_color=(0, 255, 0),\r\n    region=(50, 50, 100, 100),\r\n    timeout=5\r\n):\r\n    print(\"\u76ee\u6807\u989c\u8272\u5df2\u51fa\u73b0\")\r\n\r\n# \u5e94\u7528\u64cd\u4f5c\r\ntoolkit.app_operations(\"start\", \"com.example.app\")\r\n```\r\n## \u7279\u6027\u8bf4\u660e\r\n``` TEXT\r\n\u667a\u80fd\u56fe\u50cf\u5339\u914d: \u652f\u6301\u6a21\u677f\u5c3a\u5bf8\u81ea\u9002\u5e94\u8c03\u6574\uff0c\u81ea\u52a8\u5904\u7406\u5927\u6a21\u677f\u5c0f\u533a\u57df\u60c5\u51b5\r\n\r\n\u5f02\u5e38\u5904\u7406: \u5b8c\u5584\u7684\u9519\u8bef\u5904\u7406\u548c\u91cd\u8bd5\u673a\u5236\uff0c\u652f\u6301\u591a\u79cd\u9519\u8bef\u62a5\u544a\u7ea7\u522b\r\n\r\n\u8c03\u8bd5\u652f\u6301: \u8be6\u7ec6\u7684\u65e5\u5fd7\u8bb0\u5f55\u548c\u8c03\u8bd5\u56fe\u50cf\u4fdd\u5b58\uff0c\u4fbf\u4e8e\u95ee\u9898\u6392\u67e5\r\n\r\n\u989c\u8272\u8bc6\u522b: \u7cbe\u786e\u7684\u989c\u8272\u68c0\u6d4b\u548c\u533a\u57df\u76d1\u63a7\uff0c\u652f\u6301\u591a\u70b9\u68c0\u6d4b\r\n\r\n\u591a\u5143\u7d20\u652f\u6301: \u652f\u6301\u5b9a\u4f4d\u548c\u64cd\u4f5c\u591a\u4e2a\u76f8\u540c\u5143\u7d20\r\n\r\n\u539f\u5b50\u64cd\u4f5c: \u622a\u56fe\u7b49\u64cd\u4f5c\u4f7f\u7528\u539f\u5b50\u64cd\u4f5c\u4fdd\u8bc1\u6570\u636e\u5b8c\u6574\u6027\r\n\r\n\u5f39\u7a97\u5904\u7406: \u53ef\u914d\u7f6e\u7684\u610f\u5916\u5f39\u7a97\u81ea\u52a8\u68c0\u6d4b\u548c\u5904\u7406\u673a\u5236\r\n\r\n\u5750\u6807\u8f6c\u6362: \u81ea\u52a8\u5904\u7406\u5c4f\u5e55\u5206\u8fa8\u7387\u5dee\u5f02\u548c\u5750\u6807\u8f6c\u6362\r\n```\r\n\r\n## \u4f9d\u8d56\u5e93\r\n``` TEXT\r\nuiautomator2: \u8bbe\u5907\u63a7\u5236\u548cUI\u81ea\u52a8\u5316\r\n\r\nopencv-python: \u56fe\u50cf\u5904\u7406\u548c\u6a21\u677f\u5339\u914d\r\n\r\nPillow: \u56fe\u50cf\u5904\u7406\r\n\r\nloguru: \u65e5\u5fd7\u8bb0\u5f55\r\n\r\nnumpy: \u6570\u503c\u8ba1\u7b97\r\n\r\n\u8be5\u5de5\u5177\u5305\u63d0\u4f9b\u4e86\u5b8c\u6574\u7684 Android \u8bbe\u5907\u81ea\u52a8\u5316\u6d4b\u8bd5\u89e3\u51b3\u65b9\u6848\uff0c\u9002\u7528\u4e8e\u5404\u79cd UI \u81ea\u52a8\u5316\u573a\u666f\uff0c\u7279\u522b\u9002\u5408\u6e38\u620f\u6d4b\u8bd5\u3001\u5e94\u7528\u81ea\u52a8\u5316\u7b49\u529f\u80fd\u6d4b\u8bd5\u9700\u6c42\u3002\r\n```\r\n\r\n## \u627e\u5143\u7d20\u548c\u627e\u989c\u8272\u7684\u5de5\u5177 uiautodev\r\n\r\n``` text\r\n\u547d\u4ee4\u884c\u542f\u52a8\u8f93\u5165 uiauto.dev\r\n```\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "\u57fa\u4e8euiautomator2\u7684\u81ea\u52a8\u5316\u6d4b\u8bd5\u5de5\u5177\u5305",
    "version": "0.1.9",
    "project_urls": {
        "Bug Reports": "https://gitee.com/jiujiu315480/automation_toolkit.git/issues",
        "Source": "https://gitee.com/jiujiu315480/automation_toolkit.git"
    },
    "split_keywords": [
        "automation",
        " testing",
        " uiautomator2",
        " android",
        " image-recognition"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c041bc49ac7db725b9c5be71f49e2cf4071e2b86e6c1468d3ae921a47ce76508",
                "md5": "0f92dacb5e4d3557e0b07feb8fecc519",
                "sha256": "f48361f85aa2945765530587d2b3ee619d036ebd13c9a1734141c3af9770bb8f"
            },
            "downloads": -1,
            "filename": "automation_toolkit-0.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0f92dacb5e4d3557e0b07feb8fecc519",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 27714,
            "upload_time": "2025-10-25T02:03:44",
            "upload_time_iso_8601": "2025-10-25T02:03:44.713062Z",
            "url": "https://files.pythonhosted.org/packages/c0/41/bc49ac7db725b9c5be71f49e2cf4071e2b86e6c1468d3ae921a47ce76508/automation_toolkit-0.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d8287bac672b95b0f2ad0a5ee0eb7cc8b9f40ddd783960771d5cf0105f847eaa",
                "md5": "b3e6f0deb953f40d35b25798896d9e71",
                "sha256": "20880b9564c162ad16cd2c3de1f8ac610e6523fcf5e5353bc007a76f5f919171"
            },
            "downloads": -1,
            "filename": "automation_toolkit-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "b3e6f0deb953f40d35b25798896d9e71",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 31558,
            "upload_time": "2025-10-25T02:03:46",
            "upload_time_iso_8601": "2025-10-25T02:03:46.196726Z",
            "url": "https://files.pythonhosted.org/packages/d8/28/7bac672b95b0f2ad0a5ee0eb7cc8b9f40ddd783960771d5cf0105f847eaa/automation_toolkit-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-25 02:03:46",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "automation-toolkit"
}
        
Elapsed time: 2.27460s