# Automl_tools: automl binary classification
[![Github License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Updates](https://pyup.io/repos/github/woctezuma/google-colab-transfer/shield.svg)](pyup)
[![Python 3](https://pyup.io/repos/github/woctezuma/google-colab-transfer/python-3-shield.svg)](pyup)
[![Code coverage](https://codecov.io/gh/woctezuma/google-colab-transfer/branch/master/graph/badge.svg)](codecov)
Automl_tools is a Python library that implements Gradient Boosting
## Installation
The code is packaged for PyPI, so that the installation consists in running:
```sh
pip install automl-tools
```
## Colab
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10DFkSmzMO1GqLX-mgBWfDjS9OIVmEy6O?usp=sharing)
## Usage
Probabilistic binary example on the Boston housing dataset:
```python
import pandas as pd
from automl_tools import automl_run
train = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU")
test = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO")
automl_run(train=train,
test=test,
id_col=None,
target_col="Survived",
imp_num="knn",
imp_cat="knn",
processing="binding",
mutual_information=False,
correlation_drop=False,
model_feature_selection=None,
model_run="LR",
augmentation=True,
Stratified=True,
cv=5)
```
## Parameter
```sh
imp_num : "gaussian", "arbitrary", "median", "mean", "random", "knn"
imp_cat : "frequent", "constant", "rare", "knn"
processing: "woe", "binding"
```
## Support Binary
```sh
model_feature_selection:
default: ["LR", "RF", "LGB"]
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier
model_run:
default: "LR"
LR : LogisticRegression
RF : RandomForestClassifier
SVM : SVC
LS : LASSO
RD : RIDGE
NET : Elasticnet
DT : DecisionTreeClassifier
ET : ExtraTreesClassifier
GB : GradientBoostingClassifier
AB : AdaBoostClassifier
XGB : XGBClassifier
LGB : LGBMClassifier
CTB : CatBoostClassifier
NGB : NGBClassifier
```
## License
[Apache License 2.0](https://www.dropbox.com/s/8t6xtgk06o3ij61/LICENSE?dl=0).
## New features v1.0
* multi_class
* regression
* integrations GCP deploy model CI/CD
* integrations AWS deploy model CI/CD
## BugFix
- 0.1.5
- fix imputer
- fix space hyperparameter
- update catboost test
- 0.1.4
- add parameter cv
- add confusion Matrix
- add comments readme.txt
- 0.1.3
- add parameter id_col
- add comments readme.txt
## Reference
- Jonathan Quiza [github](https://github.com/jonaqp).
- Jonathan Quiza [RumiMLSpark](http://rumi-ml.herokuapp.com/).
- Jonathan Quiza [linkedin](https://www.linkedin.com/in/jonaqp/).
Raw data
{
"_id": null,
"home_page": "https://github.com/jonaqp/automl_tools",
"name": "automl-tools",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "automl",
"author": "Jonathan Quiza",
"author_email": "jony327@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/18/94/e77b1b0d07bc0a32dc8a4f15ce3dabc3d9f57ceee6f70c9882a5c7d3711a/automl_tools-0.2.4.tar.gz",
"platform": null,
"description": "# Automl_tools: automl binary classification\r\n\r\n\r\n[![Github License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\r\n[![Updates](https://pyup.io/repos/github/woctezuma/google-colab-transfer/shield.svg)](pyup)\r\n[![Python 3](https://pyup.io/repos/github/woctezuma/google-colab-transfer/python-3-shield.svg)](pyup)\r\n[![Code coverage](https://codecov.io/gh/woctezuma/google-colab-transfer/branch/master/graph/badge.svg)](codecov)\r\n\r\n\r\n\r\n\r\nAutoml_tools is a Python library that implements Gradient Boosting\r\n## Installation\r\n\r\nThe code is packaged for PyPI, so that the installation consists in running:\r\n```sh\r\npip install automl-tools\r\n```\r\n\r\n## Colab\r\n\r\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10DFkSmzMO1GqLX-mgBWfDjS9OIVmEy6O?usp=sharing)\r\n\r\n\r\n## Usage\r\n\r\nProbabilistic binary example on the Boston housing dataset:\r\n\r\n```python\r\nimport pandas as pd\r\nfrom automl_tools import automl_run\r\n\r\ntrain = pd.read_csv(\"https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU\")\r\ntest = pd.read_csv(\"https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO\")\r\n\r\nautoml_run(train=train,\r\n test=test,\r\n id_col=None, \r\n target_col=\"Survived\",\r\n imp_num=\"knn\",\r\n imp_cat=\"knn\",\r\n processing=\"binding\",\r\n mutual_information=False,\r\n correlation_drop=False,\r\n model_feature_selection=None,\r\n model_run=\"LR\",\r\n augmentation=True,\r\n Stratified=True,\r\n cv=5)\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n```\r\n\r\n## Parameter\r\n```sh\r\nimp_num : \"gaussian\", \"arbitrary\", \"median\", \"mean\", \"random\", \"knn\"\r\nimp_cat : \"frequent\", \"constant\", \"rare\", \"knn\"\r\nprocessing: \"woe\", \"binding\" \r\n```\r\n\r\n## Support Binary\r\n```sh\r\nmodel_feature_selection: \r\n default: [\"LR\", \"RF\", \"LGB\"]\r\n LR : LogisticRegression\r\n RF : RandomForestClassifier\r\n SVM : SVC\r\n LS : LASSO\r\n RD : RIDGE\r\n NET : Elasticnet\r\n DT : DecisionTreeClassifier\r\n ET : ExtraTreesClassifier\r\n GB : GradientBoostingClassifier\r\n AB : AdaBoostClassifier\r\n XGB : XGBClassifier\r\n LGB : LGBMClassifier\r\n CTB : CatBoostClassifier\r\n NGB : NGBClassifier\r\n\r\nmodel_run:\r\n default: \"LR\"\r\n LR : LogisticRegression\r\n RF : RandomForestClassifier\r\n SVM : SVC\r\n LS : LASSO\r\n RD : RIDGE\r\n NET : Elasticnet\r\n DT : DecisionTreeClassifier\r\n ET : ExtraTreesClassifier\r\n GB : GradientBoostingClassifier\r\n AB : AdaBoostClassifier\r\n XGB : XGBClassifier\r\n LGB : LGBMClassifier\r\n CTB : CatBoostClassifier\r\n NGB : NGBClassifier\r\n```\r\n\r\n## License\r\n\r\n[Apache License 2.0](https://www.dropbox.com/s/8t6xtgk06o3ij61/LICENSE?dl=0).\r\n\r\n\r\n## New features v1.0\r\n * multi_class\r\n * regression\r\n * integrations GCP deploy model CI/CD\r\n * integrations AWS deploy model CI/CD\r\n \r\n## BugFix\r\n - 0.1.5\r\n - fix imputer\r\n - fix space hyperparameter\r\n - update catboost test\r\n \r\n - 0.1.4\r\n - add parameter cv\r\n - add confusion Matrix\r\n - add comments readme.txt\r\n \r\n - 0.1.3\r\n - add parameter id_col\r\n - add comments readme.txt\r\n\r\n\r\n\r\n## Reference\r\n\r\n - Jonathan Quiza [github](https://github.com/jonaqp).\r\n - Jonathan Quiza [RumiMLSpark](http://rumi-ml.herokuapp.com/).\r\n - Jonathan Quiza [linkedin](https://www.linkedin.com/in/jonaqp/).\r\n\r\n\r\n\r\n",
"bugtrack_url": null,
"license": null,
"summary": "automl_tools",
"version": "0.2.4",
"project_urls": {
"Download": "https://github.com/jonaqp/automl_tools/archive/main.zip",
"Homepage": "https://github.com/jonaqp/automl_tools"
},
"split_keywords": [
"automl"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "81c7af4020cebffc899cd40c94199fb8e504f6ee93ffb58ecf52576491afd8f8",
"md5": "046064e41bf56057e6be622773a7eaff",
"sha256": "420588ff0058c590785b7ec76673a2ac99836e113a63290916da0d48813cd924"
},
"downloads": -1,
"filename": "automl_tools-0.2.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "046064e41bf56057e6be622773a7eaff",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 24463,
"upload_time": "2024-04-02T06:08:23",
"upload_time_iso_8601": "2024-04-02T06:08:23.305990Z",
"url": "https://files.pythonhosted.org/packages/81/c7/af4020cebffc899cd40c94199fb8e504f6ee93ffb58ecf52576491afd8f8/automl_tools-0.2.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1894e77b1b0d07bc0a32dc8a4f15ce3dabc3d9f57ceee6f70c9882a5c7d3711a",
"md5": "e93ef863ae555d196abf55d1c4eafe22",
"sha256": "7bcea79908fbff25683de5db5367e1082d9410b285d67de012c8215f6423035d"
},
"downloads": -1,
"filename": "automl_tools-0.2.4.tar.gz",
"has_sig": false,
"md5_digest": "e93ef863ae555d196abf55d1c4eafe22",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 19808,
"upload_time": "2024-04-02T06:08:25",
"upload_time_iso_8601": "2024-04-02T06:08:25.243269Z",
"url": "https://files.pythonhosted.org/packages/18/94/e77b1b0d07bc0a32dc8a4f15ce3dabc3d9f57ceee6f70c9882a5c7d3711a/automl_tools-0.2.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-02 06:08:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jonaqp",
"github_project": "automl_tools",
"github_not_found": true,
"lcname": "automl-tools"
}