automl-tools


Nameautoml-tools JSON
Version 0.2.4 PyPI version JSON
download
home_pagehttps://github.com/jonaqp/automl_tools
Summaryautoml_tools
upload_time2024-04-02 06:08:25
maintainerNone
docs_urlNone
authorJonathan Quiza
requires_pythonNone
licenseNone
keywords automl
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Automl_tools: automl binary classification


[![Github License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Updates](https://pyup.io/repos/github/woctezuma/google-colab-transfer/shield.svg)](pyup)
[![Python 3](https://pyup.io/repos/github/woctezuma/google-colab-transfer/python-3-shield.svg)](pyup)
[![Code coverage](https://codecov.io/gh/woctezuma/google-colab-transfer/branch/master/graph/badge.svg)](codecov)




Automl_tools is a Python library that implements Gradient Boosting
## Installation

The code is packaged for PyPI, so that the installation consists in running:
```sh
pip install automl-tools
```

## Colab

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10DFkSmzMO1GqLX-mgBWfDjS9OIVmEy6O?usp=sharing)


## Usage

Probabilistic binary example on the Boston housing dataset:

```python
import pandas as pd
from automl_tools import automl_run

train = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU")
test = pd.read_csv("https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO")

automl_run(train=train,
           test=test,
           id_col=None, 
           target_col="Survived",
           imp_num="knn",
           imp_cat="knn",
           processing="binding",
           mutual_information=False,
           correlation_drop=False,
           model_feature_selection=None,
           model_run="LR",
           augmentation=True,
           Stratified=True,
           cv=5)







```

## Parameter
```sh
imp_num : "gaussian", "arbitrary", "median", "mean", "random", "knn"
imp_cat : "frequent", "constant", "rare", "knn"
processing:  "woe", "binding" 
```

## Support Binary
```sh
model_feature_selection: 
    default: ["LR", "RF", "LGB"]
        LR  : LogisticRegression
        RF  : RandomForestClassifier
        SVM : SVC
        LS  : LASSO
        RD  : RIDGE
        NET : Elasticnet
        DT  : DecisionTreeClassifier
        ET  : ExtraTreesClassifier
        GB  : GradientBoostingClassifier
        AB  : AdaBoostClassifier
        XGB  : XGBClassifier
        LGB  : LGBMClassifier
        CTB  : CatBoostClassifier
        NGB  : NGBClassifier

model_run:
    default: "LR"
        LR  : LogisticRegression
        RF  : RandomForestClassifier
        SVM : SVC
        LS  : LASSO
        RD  : RIDGE
        NET : Elasticnet
        DT  : DecisionTreeClassifier
        ET  : ExtraTreesClassifier
        GB  : GradientBoostingClassifier
        AB  : AdaBoostClassifier
        XGB  : XGBClassifier
        LGB  : LGBMClassifier
        CTB  : CatBoostClassifier
        NGB  : NGBClassifier
```

## License

[Apache License 2.0](https://www.dropbox.com/s/8t6xtgk06o3ij61/LICENSE?dl=0).


## New features v1.0
 * multi_class
 * regression
 * integrations GCP deploy model CI/CD
 * integrations AWS deploy model CI/CD
 
## BugFix
 - 0.1.5
   - fix imputer
   - fix space hyperparameter
   - update catboost test
   
 - 0.1.4
   - add parameter cv
   - add confusion Matrix
   - add comments readme.txt
   
 - 0.1.3
   - add parameter id_col
   - add comments readme.txt



## Reference

 - Jonathan Quiza [github](https://github.com/jonaqp).
 - Jonathan Quiza [RumiMLSpark](http://rumi-ml.herokuapp.com/).
 - Jonathan Quiza [linkedin](https://www.linkedin.com/in/jonaqp/).




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jonaqp/automl_tools",
    "name": "automl-tools",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "automl",
    "author": "Jonathan Quiza",
    "author_email": "jony327@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/18/94/e77b1b0d07bc0a32dc8a4f15ce3dabc3d9f57ceee6f70c9882a5c7d3711a/automl_tools-0.2.4.tar.gz",
    "platform": null,
    "description": "# Automl_tools: automl binary classification\r\n\r\n\r\n[![Github License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\r\n[![Updates](https://pyup.io/repos/github/woctezuma/google-colab-transfer/shield.svg)](pyup)\r\n[![Python 3](https://pyup.io/repos/github/woctezuma/google-colab-transfer/python-3-shield.svg)](pyup)\r\n[![Code coverage](https://codecov.io/gh/woctezuma/google-colab-transfer/branch/master/graph/badge.svg)](codecov)\r\n\r\n\r\n\r\n\r\nAutoml_tools is a Python library that implements Gradient Boosting\r\n## Installation\r\n\r\nThe code is packaged for PyPI, so that the installation consists in running:\r\n```sh\r\npip install automl-tools\r\n```\r\n\r\n## Colab\r\n\r\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10DFkSmzMO1GqLX-mgBWfDjS9OIVmEy6O?usp=sharing)\r\n\r\n\r\n## Usage\r\n\r\nProbabilistic binary example on the Boston housing dataset:\r\n\r\n```python\r\nimport pandas as pd\r\nfrom automl_tools import automl_run\r\n\r\ntrain = pd.read_csv(\"https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/train.csv?token=AAN2ZBDWF77QITK4ARSFIFDABUGAU\")\r\ntest = pd.read_csv(\"https://raw.githubusercontent.com/jonaqp/automl_tools/main/automl_tools/examples/test.csv?token=AAN2ZBD6TMUC5XSGRTJNVPDABUGCO\")\r\n\r\nautoml_run(train=train,\r\n           test=test,\r\n           id_col=None, \r\n           target_col=\"Survived\",\r\n           imp_num=\"knn\",\r\n           imp_cat=\"knn\",\r\n           processing=\"binding\",\r\n           mutual_information=False,\r\n           correlation_drop=False,\r\n           model_feature_selection=None,\r\n           model_run=\"LR\",\r\n           augmentation=True,\r\n           Stratified=True,\r\n           cv=5)\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n```\r\n\r\n## Parameter\r\n```sh\r\nimp_num : \"gaussian\", \"arbitrary\", \"median\", \"mean\", \"random\", \"knn\"\r\nimp_cat : \"frequent\", \"constant\", \"rare\", \"knn\"\r\nprocessing:  \"woe\", \"binding\" \r\n```\r\n\r\n## Support Binary\r\n```sh\r\nmodel_feature_selection: \r\n    default: [\"LR\", \"RF\", \"LGB\"]\r\n        LR  : LogisticRegression\r\n        RF  : RandomForestClassifier\r\n        SVM : SVC\r\n        LS  : LASSO\r\n        RD  : RIDGE\r\n        NET : Elasticnet\r\n        DT  : DecisionTreeClassifier\r\n        ET  : ExtraTreesClassifier\r\n        GB  : GradientBoostingClassifier\r\n        AB  : AdaBoostClassifier\r\n        XGB  : XGBClassifier\r\n        LGB  : LGBMClassifier\r\n        CTB  : CatBoostClassifier\r\n        NGB  : NGBClassifier\r\n\r\nmodel_run:\r\n    default: \"LR\"\r\n        LR  : LogisticRegression\r\n        RF  : RandomForestClassifier\r\n        SVM : SVC\r\n        LS  : LASSO\r\n        RD  : RIDGE\r\n        NET : Elasticnet\r\n        DT  : DecisionTreeClassifier\r\n        ET  : ExtraTreesClassifier\r\n        GB  : GradientBoostingClassifier\r\n        AB  : AdaBoostClassifier\r\n        XGB  : XGBClassifier\r\n        LGB  : LGBMClassifier\r\n        CTB  : CatBoostClassifier\r\n        NGB  : NGBClassifier\r\n```\r\n\r\n## License\r\n\r\n[Apache License 2.0](https://www.dropbox.com/s/8t6xtgk06o3ij61/LICENSE?dl=0).\r\n\r\n\r\n## New features v1.0\r\n * multi_class\r\n * regression\r\n * integrations GCP deploy model CI/CD\r\n * integrations AWS deploy model CI/CD\r\n \r\n## BugFix\r\n - 0.1.5\r\n   - fix imputer\r\n   - fix space hyperparameter\r\n   - update catboost test\r\n   \r\n - 0.1.4\r\n   - add parameter cv\r\n   - add confusion Matrix\r\n   - add comments readme.txt\r\n   \r\n - 0.1.3\r\n   - add parameter id_col\r\n   - add comments readme.txt\r\n\r\n\r\n\r\n## Reference\r\n\r\n - Jonathan Quiza [github](https://github.com/jonaqp).\r\n - Jonathan Quiza [RumiMLSpark](http://rumi-ml.herokuapp.com/).\r\n - Jonathan Quiza [linkedin](https://www.linkedin.com/in/jonaqp/).\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "automl_tools",
    "version": "0.2.4",
    "project_urls": {
        "Download": "https://github.com/jonaqp/automl_tools/archive/main.zip",
        "Homepage": "https://github.com/jonaqp/automl_tools"
    },
    "split_keywords": [
        "automl"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "81c7af4020cebffc899cd40c94199fb8e504f6ee93ffb58ecf52576491afd8f8",
                "md5": "046064e41bf56057e6be622773a7eaff",
                "sha256": "420588ff0058c590785b7ec76673a2ac99836e113a63290916da0d48813cd924"
            },
            "downloads": -1,
            "filename": "automl_tools-0.2.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "046064e41bf56057e6be622773a7eaff",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 24463,
            "upload_time": "2024-04-02T06:08:23",
            "upload_time_iso_8601": "2024-04-02T06:08:23.305990Z",
            "url": "https://files.pythonhosted.org/packages/81/c7/af4020cebffc899cd40c94199fb8e504f6ee93ffb58ecf52576491afd8f8/automl_tools-0.2.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1894e77b1b0d07bc0a32dc8a4f15ce3dabc3d9f57ceee6f70c9882a5c7d3711a",
                "md5": "e93ef863ae555d196abf55d1c4eafe22",
                "sha256": "7bcea79908fbff25683de5db5367e1082d9410b285d67de012c8215f6423035d"
            },
            "downloads": -1,
            "filename": "automl_tools-0.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "e93ef863ae555d196abf55d1c4eafe22",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 19808,
            "upload_time": "2024-04-02T06:08:25",
            "upload_time_iso_8601": "2024-04-02T06:08:25.243269Z",
            "url": "https://files.pythonhosted.org/packages/18/94/e77b1b0d07bc0a32dc8a4f15ce3dabc3d9f57ceee6f70c9882a5c7d3711a/automl_tools-0.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-02 06:08:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jonaqp",
    "github_project": "automl_tools",
    "github_not_found": true,
    "lcname": "automl-tools"
}
        
Elapsed time: 0.72829s