autonml


Nameautonml JSON
Version 0.3.3 PyPI version JSON
download
home_pagehttps://gitlab.com/autonlab/d3m/autonml/-/tree/dev
SummaryAutonML : CMU's AutoML System
upload_time2023-01-23 02:34:25
maintainerAndrew Williams, Vedant Sanil
docs_urlNone
authorSaswati Ray, Andrew Williams, Vedant Sanil
requires_python>=3.6
licenseApache-2.0
keywords datadrivendiscovery automl d3m ta2 cmu
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img src="https://gitlab.com/sray/cmu-ta2/-/raw/master/docs/img/AutonML_logo.png?inline=false" width=30%>


# CMU TA2 (Built using DARPA D3M ecosystem)

**Taking your machine learning capacity to the nth power.**

Auto<sup>n</sup>ML is an automated machine learning system developed by CMU Auton Lab 
to power data scientists with efficient model discovery and advanced data analytics. It is designed to be the first step in exploratory data science. Auto<sup>n</sup>ML leverages powerful methods in machine learning to solve an enriched array of tasks on different data modalities.

Auto<sup>n</sup>ML is Carnegie Mellon University's implementation of the [Data Driven Discovery program (D3M)](https://datadrivendiscovery.org/).

[Documentation is available here](https://autonml.readthedocs.io/en/latest/)

            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.com/autonlab/d3m/autonml/-/tree/dev",
    "name": "autonml",
    "maintainer": "Andrew Williams, Vedant Sanil",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "awillia2@andrew.cmu.edu, vsanil@andrew.cmu.edu",
    "keywords": "datadrivendiscovery,automl,d3m,ta2,cmu",
    "author": "Saswati Ray, Andrew Williams, Vedant Sanil",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/e1/e5/74b08f39f8a48bd036224ee40a0a23ca7045fffd63cf82979ce3cb0f26e2/autonml-0.3.3.tar.gz",
    "platform": null,
    "description": "<img src=\"https://gitlab.com/sray/cmu-ta2/-/raw/master/docs/img/AutonML_logo.png?inline=false\" width=30%>\n\n\n# CMU TA2 (Built using DARPA D3M ecosystem)\n\n**Taking your machine learning capacity to the nth power.**\n\nAuto<sup>n</sup>ML is an automated machine learning system developed by CMU Auton Lab \nto power data scientists with efficient model discovery and advanced data analytics. It is designed to be the first step in exploratory data science. Auto<sup>n</sup>ML leverages powerful methods in machine learning to solve an enriched array of tasks on different data modalities.\n\nAuto<sup>n</sup>ML is Carnegie Mellon University's implementation of the [Data Driven Discovery program (D3M)](https://datadrivendiscovery.org/).\n\n[Documentation is available here](https://autonml.readthedocs.io/en/latest/)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "AutonML : CMU's AutoML System",
    "version": "0.3.3",
    "split_keywords": [
        "datadrivendiscovery",
        "automl",
        "d3m",
        "ta2",
        "cmu"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f55efcfa389a703f4910558ef0e5240258976c0db43a0f1809641038bf5f4910",
                "md5": "1f00f3e1a0a4927d69d97180c3369e7e",
                "sha256": "803be6b9c3c1ba0c677a72c00509cbc7eb72d8c72383dbb0bc6f285b2f36ad9e"
            },
            "downloads": -1,
            "filename": "autonml-0.3.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1f00f3e1a0a4927d69d97180c3369e7e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 91909,
            "upload_time": "2023-01-23T02:34:06",
            "upload_time_iso_8601": "2023-01-23T02:34:06.880341Z",
            "url": "https://files.pythonhosted.org/packages/f5/5e/fcfa389a703f4910558ef0e5240258976c0db43a0f1809641038bf5f4910/autonml-0.3.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e1e574b08f39f8a48bd036224ee40a0a23ca7045fffd63cf82979ce3cb0f26e2",
                "md5": "69727cd51a3020d5c68c96e2ae6b97e9",
                "sha256": "d404399f6955f9265d530c15234b18a7ff5f34fd0864f5c3e330e0189442a6fc"
            },
            "downloads": -1,
            "filename": "autonml-0.3.3.tar.gz",
            "has_sig": false,
            "md5_digest": "69727cd51a3020d5c68c96e2ae6b97e9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 99867,
            "upload_time": "2023-01-23T02:34:25",
            "upload_time_iso_8601": "2023-01-23T02:34:25.261731Z",
            "url": "https://files.pythonhosted.org/packages/e1/e5/74b08f39f8a48bd036224ee40a0a23ca7045fffd63cf82979ce3cb0f26e2/autonml-0.3.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-23 02:34:25",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "autonml"
}
        
Elapsed time: 0.03485s