autoqubo


Nameautoqubo JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/FujitsuResearch/autoqubo
SummaryAutoQUBO gives you the tools for creating QUBO from Python code.
upload_time2024-01-17 06:23:14
maintainerFujitsu Limited
docs_urlNone
authorFujitsu Limited
requires_python!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*
licenseBSD-3-Clause
keywords qubo
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
             #  AUTOmated QUBO Generator

 AUTOmated QUBO Generator is an automatic tool for converting a high-level description
of an optimization problem, written in Python, into an equivalent QUBO representation.
It is doing this by using a novel **data driven** translation method that
can completely decouple the input and output representation.

<p align="center">
<img src="./doc/auto_qubo.png" alt= "overview of AutoQUBO" width="500" >
</p>


This repository acts as a companion to our publications:

1. Alberto Moraglio, Serban Georgescu, and Przemysław Sadowski. 2022. AutoQubo: Data-driven automatic QUBO generation. In Genetic and Evolutionary Computation Conference Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3520304.3533965

2. Justin Pauckert, Mayowa Ayodele, Marcos Diez García, Serban Georgescu, and Matthieu Parizy. 2023. AutoQUBO v2: Towards Efficient and Effective QUBO Formulations for Ising Machines. In Genetic and Evolutionary Computation Conference Companion (GECCO ’23 Companion), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3583133.3590662

Installation
------------

create conda environment with all dependencies
```
conda env create -f environment.yml
```
activate it
```
conda activate autoqubo
```
install autoqubo as package
```
pip install autoqubo
```

How to cite
-----------
If you find our work useful, please cite the paper below:

```
@inproceedings{10.1145/3520304.3533965,
    author = {Moraglio, Alberto and Georgescu, Serban and Sadowski, Przemys{\l}aw},
    title = {AutoQubo: Data-driven Automatic QUBO Generation},
    year = {2022},
    isbn = {978-1-4503-9268-6/22/07},
    publisher = {Association for Computing Machinery},
    doi = {10.1145/3520304.3533965},
    booktitle = {Proceedings of the Genetic and Evolutionary Computation Conference Companion},
    series = {GECCO '22} 
}
```





            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/FujitsuResearch/autoqubo",
    "name": "autoqubo",
    "maintainer": "Fujitsu Limited",
    "docs_url": null,
    "requires_python": "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*",
    "maintainer_email": "",
    "keywords": "QUBO",
    "author": "Fujitsu Limited",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/13/39/3f8c25609e583fda6a0ccac29826cd10dc6cdcffd82b9efecbada99d2cc4/autoqubo-0.0.3.tar.gz",
    "platform": null,
    "description": " #  AUTOmated QUBO Generator\n\n AUTOmated QUBO Generator is an automatic tool for converting a high-level description\nof an optimization problem, written in Python, into an equivalent QUBO representation.\nIt is doing this by using a novel **data driven** translation method that\ncan completely decouple the input and output representation.\n\n<p align=\"center\">\n<img src=\"./doc/auto_qubo.png\" alt= \"overview of AutoQUBO\" width=\"500\" >\n</p>\n\n\nThis repository acts as a companion to our publications:\n\n1. Alberto Moraglio, Serban Georgescu, and Przemys\u0142aw Sadowski. 2022. AutoQubo: Data-driven automatic QUBO generation. In Genetic and Evolutionary Computation Conference Companion (GECCO \u201922 Companion), July 9\u201313, 2022, Boston, MA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3520304.3533965\n\n2. Justin Pauckert, Mayowa Ayodele, Marcos Diez Garc\u00eda, Serban Georgescu, and Matthieu Parizy. 2023. AutoQUBO v2: Towards Efficient and Effective QUBO Formulations for Ising Machines. In Genetic and Evolutionary Computation Conference Companion (GECCO \u201923 Companion), July 15\u201319, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3583133.3590662\n\nInstallation\n------------\n\ncreate conda environment with all dependencies\n```\nconda env create -f environment.yml\n```\nactivate it\n```\nconda activate autoqubo\n```\ninstall autoqubo as package\n```\npip install autoqubo\n```\n\nHow to cite\n-----------\nIf you find our work useful, please cite the paper below:\n\n```\n@inproceedings{10.1145/3520304.3533965,\n    author = {Moraglio, Alberto and Georgescu, Serban and Sadowski, Przemys{\\l}aw},\n    title = {AutoQubo: Data-driven Automatic QUBO Generation},\n    year = {2022},\n    isbn = {978-1-4503-9268-6/22/07},\n    publisher = {Association for Computing Machinery},\n    doi = {10.1145/3520304.3533965},\n    booktitle = {Proceedings of the Genetic and Evolutionary Computation Conference Companion},\n    series = {GECCO '22} \n}\n```\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "AutoQUBO gives you the tools for creating QUBO from Python code.",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/FujitsuResearch/autoqubo"
    },
    "split_keywords": [
        "qubo"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "13393f8c25609e583fda6a0ccac29826cd10dc6cdcffd82b9efecbada99d2cc4",
                "md5": "438db56fce6a10690f1e69fba4b8641b",
                "sha256": "07cc3f0706e9e54ec08d8216e567a102fa3fb1c1e252835c680dc0db036fce2f"
            },
            "downloads": -1,
            "filename": "autoqubo-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "438db56fce6a10690f1e69fba4b8641b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*",
            "size": 11861,
            "upload_time": "2024-01-17T06:23:14",
            "upload_time_iso_8601": "2024-01-17T06:23:14.074986Z",
            "url": "https://files.pythonhosted.org/packages/13/39/3f8c25609e583fda6a0ccac29826cd10dc6cdcffd82b9efecbada99d2cc4/autoqubo-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-17 06:23:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "FujitsuResearch",
    "github_project": "autoqubo",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "autoqubo"
}
        
Elapsed time: 0.29089s