autordf2gml


Nameautordf2gml JSON
Version 0.0.1 PyPI version JSON
download
home_pageNone
SummaryAutoRDF2GML: A Framework for Transforming RDF Data into Graph Representations for Graph Machine Learning.
upload_time2024-06-13 08:37:39
maintainerNone
docs_urlNone
authorNone
requires_python<=3.9.9,>=3.8
licenseMIT License
keywords rdf graph dataset knowledge graph autordf2gml gml gnn
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AutoRDF2GML

## Overview

AutoRDF2GML is a framework designed to transform RDF data into graph representations suitable for graph-based machine learning methods, e.g., Graph Neural Networks (GNNs). It uniquely generates content-based features from RDF datatype properties and topology-based features from RDF object properties, enabling the effective integration of Semantic Web technologies with Graph Machine Learning.

## Installation

To install the current PyPI version, run:

```sh
pip install autordf2gml
```

We recommend users to use **isolated environment, such as venv or conda**, to use the library. Please note that the current version has only been tested with **Python versions 3.8 to 3.9.9**. 

## Usage

To start using AutoRDF2GML, you need: **(1) RDF file** and **(2) Configuration file** describing the configuration for the transformation. In the configuration file, define the RDF classes and properties as needed for your project. See the following for quick example. 

## Quick Example

This example uses the [semopenalex-C1793878-sample.nt](https://github.com/davidlamprecht/AutoRDF2GML/blob/main/example/semopenalex-C1793878-sample.nt) RDF file, a curated subset from [SemOpenAlex](https://semopenalex.org).

#### 1. Preparing the configuration file

Fill all the required fields in the config file: see [config-soa-cb.ini](https://github.com/davidlamprecht/AutoRDF2GML/blob/main/example/config-soa-cb.ini) and [config-soa-tb.ini](https://github.com/davidlamprecht/AutoRDF2GML/blob/main/example/example-topologyfeatures/config-soa-tb.ini) as examples for the content-based and topology-based transformation, respectively. The following shows an example of the config file format:

    ```ini
    [InputPath] ;required
    input_path = semopenalex-C1793878-sample.nt

    [SavePath] ;required
    save_path_numeric_graph = semopenalex/numeric-graph/
    save_path_mapping = semopenalex/mapping/

    [NLD] ;required
    nld_class = work

    [EMBEDDING] ;required
    embedding_model = allenai/scibert_scivocab_uncased

    [Nodes] ;required
    classes = work, author, institution, source, concept, publisher
    work = https://semopenalex.org/class/Work
    author = https://semopenalex.org/class/Author
    institution = https://semopenalex.org/class/Institution
    
    [SimpleEdges] ;required
    edge_names = author_institution
    author_institution_start_node = author
    author_institution_properties = http://www.w3.org/ns/org#memberOf
    author_institution_end_node = institution
    ```

#### 2. Using the library

```python
import autordf2gml

#to run content-based transformation
autordf2gml.content_feature("config-soa-cb.ini") 

#to run topology-based transformation
autordf2gml.topology_feature("config-soa-tb.ini") 

#to run content-based transformation only using simple-edges
autordf2gml.simpleedges_feature("config-aifb-cb-simple.ini")
```

## Our Github

The most recent updates, documentation, and examples can be accessed through the following repository:

- <https://github.com/davidlamprecht/AutoRDF2GML>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "autordf2gml",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<=3.9.9,>=3.8",
    "maintainer_email": null,
    "keywords": "rdf, graph dataset, knowledge graph, autordf2gml, gml, gnn",
    "author": null,
    "author_email": "Michael Faerber <michael.faerber@tu-dresden.de>, David Lamprecht <lamprecht.david@web.de>, Yuni Susanti <yuni.susanti@mailbox.tu-dresden.de>",
    "download_url": "https://files.pythonhosted.org/packages/9a/3e/a438d0a4ea422348f2c5646e978d3e0a33ecc558ddb05fd1946a55e7482c/autordf2gml-0.0.1.tar.gz",
    "platform": null,
    "description": "# AutoRDF2GML\n\n## Overview\n\nAutoRDF2GML is a framework designed to transform RDF data into graph representations suitable for graph-based machine learning methods, e.g., Graph Neural Networks (GNNs). It uniquely generates content-based features from RDF datatype properties and topology-based features from RDF object properties, enabling the effective integration of Semantic Web technologies with Graph Machine Learning.\n\n## Installation\n\nTo install the current PyPI version, run:\n\n```sh\npip install autordf2gml\n```\n\nWe recommend users to use **isolated environment, such as venv or conda**, to use the library. Please note that the current version has only been tested with **Python versions 3.8 to 3.9.9**. \n\n## Usage\n\nTo start using AutoRDF2GML, you need: **(1) RDF file** and **(2) Configuration file** describing the configuration for the transformation. In the configuration file, define the RDF classes and properties as needed for your project. See the following for quick example. \n\n## Quick Example\n\nThis example uses the [semopenalex-C1793878-sample.nt](https://github.com/davidlamprecht/AutoRDF2GML/blob/main/example/semopenalex-C1793878-sample.nt) RDF file, a curated subset from [SemOpenAlex](https://semopenalex.org).\n\n#### 1. Preparing the configuration file\n\nFill all the required fields in the config file: see [config-soa-cb.ini](https://github.com/davidlamprecht/AutoRDF2GML/blob/main/example/config-soa-cb.ini) and [config-soa-tb.ini](https://github.com/davidlamprecht/AutoRDF2GML/blob/main/example/example-topologyfeatures/config-soa-tb.ini) as examples for the content-based and topology-based transformation, respectively. The following shows an example of the config file format:\n\n    ```ini\n    [InputPath] ;required\n    input_path = semopenalex-C1793878-sample.nt\n\n    [SavePath] ;required\n    save_path_numeric_graph = semopenalex/numeric-graph/\n    save_path_mapping = semopenalex/mapping/\n\n    [NLD] ;required\n    nld_class = work\n\n    [EMBEDDING] ;required\n    embedding_model = allenai/scibert_scivocab_uncased\n\n    [Nodes] ;required\n    classes = work, author, institution, source, concept, publisher\n    work = https://semopenalex.org/class/Work\n    author = https://semopenalex.org/class/Author\n    institution = https://semopenalex.org/class/Institution\n    \n    [SimpleEdges] ;required\n    edge_names = author_institution\n    author_institution_start_node = author\n    author_institution_properties = http://www.w3.org/ns/org#memberOf\n    author_institution_end_node = institution\n    ```\n\n#### 2. Using the library\n\n```python\nimport autordf2gml\n\n#to run content-based transformation\nautordf2gml.content_feature(\"config-soa-cb.ini\") \n\n#to run topology-based transformation\nautordf2gml.topology_feature(\"config-soa-tb.ini\") \n\n#to run content-based transformation only using simple-edges\nautordf2gml.simpleedges_feature(\"config-aifb-cb-simple.ini\")\n```\n\n## Our Github\n\nThe most recent updates, documentation, and examples can be accessed through the following repository:\n\n- <https://github.com/davidlamprecht/AutoRDF2GML>\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "AutoRDF2GML: A Framework for Transforming RDF Data into Graph Representations for Graph Machine Learning.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/davidlamprecht/AutoRDF2GML",
        "Issues": "https://github.com/davidlamprecht/AutoRDF2GML/issues"
    },
    "split_keywords": [
        "rdf",
        " graph dataset",
        " knowledge graph",
        " autordf2gml",
        " gml",
        " gnn"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f63412bcfaa9d1ba0329ceddd7b36761bf793c76808c058d9b04a04e0748c96c",
                "md5": "9758f7799b52f81f4844c63268be1255",
                "sha256": "905519432e9261a1b7ffdcfaaaaca2cb49e3f5414b6d40647b7100cb96c0f027"
            },
            "downloads": -1,
            "filename": "autordf2gml-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9758f7799b52f81f4844c63268be1255",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<=3.9.9,>=3.8",
            "size": 19925,
            "upload_time": "2024-06-13T08:37:38",
            "upload_time_iso_8601": "2024-06-13T08:37:38.433320Z",
            "url": "https://files.pythonhosted.org/packages/f6/34/12bcfaa9d1ba0329ceddd7b36761bf793c76808c058d9b04a04e0748c96c/autordf2gml-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9a3ea438d0a4ea422348f2c5646e978d3e0a33ecc558ddb05fd1946a55e7482c",
                "md5": "b8f56bf1c1f859c4fd402976513a55e6",
                "sha256": "8a39a521dc7d470c1258894b3458cbfa3d73453ee9a307effa482c29727607c9"
            },
            "downloads": -1,
            "filename": "autordf2gml-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b8f56bf1c1f859c4fd402976513a55e6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<=3.9.9,>=3.8",
            "size": 15726,
            "upload_time": "2024-06-13T08:37:39",
            "upload_time_iso_8601": "2024-06-13T08:37:39.749069Z",
            "url": "https://files.pythonhosted.org/packages/9a/3e/a438d0a4ea422348f2c5646e978d3e0a33ecc558ddb05fd1946a55e7482c/autordf2gml-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-13 08:37:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "davidlamprecht",
    "github_project": "AutoRDF2GML",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "autordf2gml"
}
        
Elapsed time: 0.28950s