autort-swarms


Nameautort-swarms JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/AutoRT
SummaryAutoRT - Pytorch
upload_time2024-02-14 18:48:03
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# AutoRT
![AutoRTImage](autort.png)
Implementation of AutoRT: "AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents". This repo will implement the multi agent system that transforms a scene into a list of ranked and priortized tasks for an robotic action model to execute. This is an very effective setup that I personally believe is the future for swarming robotic foundation models!

This project will be implemented using Swarms, for the various llms and use the official RT-1 as the robotic action model.

[PAPER LINK](https://auto-rt.github.io/static/pdf/AutoRT.pdf)

## Install
`$ pip3 install autort-swarms`


## Usage


### AutoRTAgent
A single AutoRT agent that: analyzes a scene using visual COT -> generate tasks -> filter tasks -> execute it with a robotic transformer.
```python
# Import necessary modules
import os
from autort import AutoRTSwarm, AutoRTAgent

# Set the OpenAI API key
openai_api_key = os.getenv("OPENAI_API_KEY")

# Define a list of AutoRTAgent instances
agents = [
    AutoRTAgent(openai_api_key, max_tokens=1000),
    AutoRTAgent(openai_api_key, max_tokens=1000),
]

# Create an instance of AutoRTSwarm with the agents and datastore
autort_swarm = AutoRTSwarm(agents)

# Run the AutoRTSwarm with the given inputs
autort_swarm.run(
    "There is a bottle on the table.",
    "https://i.imgur.com/2qY9f8U.png",
)
```


### AutoRTSwarm
A team of AutoRT agents where you can plug in and play any number of `AutoRTAgents` with customization. First, the task will be routed to each agent and then all of their outputs will be saved.
```python
# Import necessary modules
import os
from autort import AutoRTSwarm, AutoRTAgent

# Set the OpenAI API key
openai_api_key = os.getenv("OPENAI_API_KEY")

# Define a list of AutoRTAgent instances
agents = [
    AutoRTAgent(openai_api_key, max_tokens=1000),
    AutoRTAgent(openai_api_key, max_tokens=1000),
]

# Create an instance of AutoRTSwarm with the agents and datastore
autort_swarm = AutoRTSwarm(agents)

# Run the AutoRTSwarm with the given inputs
autort_swarm.run(
    "There is a bottle on the table.",
    "https://i.imgur.com/2qY9f8U.png",
)
```

## Citation
```bibtex
@inproceedings{
    anonymous2023autort,
    title={Auto{RT}: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents},
    author={Anonymous},
    booktitle={Submitted to The Twelfth International Conference on Learning Representations},
    year={2023},
    url={https://openreview.net/forum?id=xVlcbh0poD},
    note={under review}
}

```


# License
MIT



# Todo
- [ ] Implement a run method into `AutoRTSwarm` that runs all the agents with APIs.
- [ ] Make it able to send commands to a certain agent using the swarm network.
- [ ] Send a task to all agents in the swarm network
- [ ] 
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/AutoRT",
    "name": "autort-swarms",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/6f/e6/dbe95e3e424a024f94a4e68fe1d11b036075d0ea9fa182ebd207fd9f9179/autort_swarms-0.0.6.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# AutoRT\n![AutoRTImage](autort.png)\nImplementation of AutoRT: \"AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents\". This repo will implement the multi agent system that transforms a scene into a list of ranked and priortized tasks for an robotic action model to execute. This is an very effective setup that I personally believe is the future for swarming robotic foundation models!\n\nThis project will be implemented using Swarms, for the various llms and use the official RT-1 as the robotic action model.\n\n[PAPER LINK](https://auto-rt.github.io/static/pdf/AutoRT.pdf)\n\n## Install\n`$ pip3 install autort-swarms`\n\n\n## Usage\n\n\n### AutoRTAgent\nA single AutoRT agent that: analyzes a scene using visual COT -> generate tasks -> filter tasks -> execute it with a robotic transformer.\n```python\n# Import necessary modules\nimport os\nfrom autort import AutoRTSwarm, AutoRTAgent\n\n# Set the OpenAI API key\nopenai_api_key = os.getenv(\"OPENAI_API_KEY\")\n\n# Define a list of AutoRTAgent instances\nagents = [\n    AutoRTAgent(openai_api_key, max_tokens=1000),\n    AutoRTAgent(openai_api_key, max_tokens=1000),\n]\n\n# Create an instance of AutoRTSwarm with the agents and datastore\nautort_swarm = AutoRTSwarm(agents)\n\n# Run the AutoRTSwarm with the given inputs\nautort_swarm.run(\n    \"There is a bottle on the table.\",\n    \"https://i.imgur.com/2qY9f8U.png\",\n)\n```\n\n\n### AutoRTSwarm\nA team of AutoRT agents where you can plug in and play any number of `AutoRTAgents` with customization. First, the task will be routed to each agent and then all of their outputs will be saved.\n```python\n# Import necessary modules\nimport os\nfrom autort import AutoRTSwarm, AutoRTAgent\n\n# Set the OpenAI API key\nopenai_api_key = os.getenv(\"OPENAI_API_KEY\")\n\n# Define a list of AutoRTAgent instances\nagents = [\n    AutoRTAgent(openai_api_key, max_tokens=1000),\n    AutoRTAgent(openai_api_key, max_tokens=1000),\n]\n\n# Create an instance of AutoRTSwarm with the agents and datastore\nautort_swarm = AutoRTSwarm(agents)\n\n# Run the AutoRTSwarm with the given inputs\nautort_swarm.run(\n    \"There is a bottle on the table.\",\n    \"https://i.imgur.com/2qY9f8U.png\",\n)\n```\n\n## Citation\n```bibtex\n@inproceedings{\n    anonymous2023autort,\n    title={Auto{RT}: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents},\n    author={Anonymous},\n    booktitle={Submitted to The Twelfth International Conference on Learning Representations},\n    year={2023},\n    url={https://openreview.net/forum?id=xVlcbh0poD},\n    note={under review}\n}\n\n```\n\n\n# License\nMIT\n\n\n\n# Todo\n- [ ] Implement a run method into `AutoRTSwarm` that runs all the agents with APIs.\n- [ ] Make it able to send commands to a certain agent using the swarm network.\n- [ ] Send a task to all agents in the swarm network\n- [ ] ",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "AutoRT - Pytorch",
    "version": "0.0.6",
    "project_urls": {
        "Documentation": "https://github.com/kyegomez/AutoRT",
        "Homepage": "https://github.com/kyegomez/AutoRT",
        "Repository": "https://github.com/kyegomez/AutoRT"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "858a904d3b6ad1789b845d4b9e5b5fc4fbff79ce9156239c7b5dc0792091edae",
                "md5": "06bc0b75ca7a7459504effee2f52edca",
                "sha256": "73cc54b30201ab228008da1befa048b3b15d3b3f3c432374d7cf076c293e94c0"
            },
            "downloads": -1,
            "filename": "autort_swarms-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "06bc0b75ca7a7459504effee2f52edca",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 9323,
            "upload_time": "2024-02-14T18:48:01",
            "upload_time_iso_8601": "2024-02-14T18:48:01.689797Z",
            "url": "https://files.pythonhosted.org/packages/85/8a/904d3b6ad1789b845d4b9e5b5fc4fbff79ce9156239c7b5dc0792091edae/autort_swarms-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6fe6dbe95e3e424a024f94a4e68fe1d11b036075d0ea9fa182ebd207fd9f9179",
                "md5": "1238b668d040ba9b85d3b1b051e82352",
                "sha256": "d35f1fbfe83d63a6bea378448e29d8488ee8fde15a72ca607cd737564767588a"
            },
            "downloads": -1,
            "filename": "autort_swarms-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "1238b668d040ba9b85d3b1b051e82352",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 9294,
            "upload_time": "2024-02-14T18:48:03",
            "upload_time_iso_8601": "2024-02-14T18:48:03.075463Z",
            "url": "https://files.pythonhosted.org/packages/6f/e6/dbe95e3e424a024f94a4e68fe1d11b036075d0ea9fa182ebd207fd9f9179/autort_swarms-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-14 18:48:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "AutoRT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "autort-swarms"
}
        
Elapsed time: 0.21982s