autotwin_pmswsgi


Nameautotwin_pmswsgi JSON
Version 0.1.9 PyPI version JSON
download
home_pagehttps://github.com/AutotwinEU/proc-mining-serv
SummaryProcess Mining Service WSGI for Auto-Twin
upload_time2024-12-26 22:56:16
maintainerNone
docs_urlNone
authorLulai Zhu
requires_python<4.0,>=3.10
licenseBSD-3-Clause
keywords auto-twin system discovery restful service
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI - License](https://img.shields.io/pypi/l/autotwin_pmswsgi)](https://github.com/AutotwinEU/proc-mining-serv/blob/main/LICENSE)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/autotwin_pmswsgi)](https://www.python.org/downloads/)
[![PyPI - Version](https://img.shields.io/pypi/v/autotwin_pmswsgi)](https://pypi.org/project/autotwin_pmswsgi/)

# Processing Mining Service (PMS) WSGI for Auto-Twin

The processing mining service (PMS) WSGI implements a RESTful API that invokes
different system discovery modules to automatically create, update and delete
graph models, Petri nets and automata in a system knowledge graph (SKG).

## Installation
To facilitate installation, the PMS WSGI is released as a Python module,
`autotwin_pmswsgi`, in the PyPI repository. `autotwin_pmswsgi` implicitly
depends on `pygraphviz`. This dependency however cannot be resolved
automatically by `pip`. As a preparation, you need to install `pygraphviz`
manually, following instructions provided
[here](https://pygraphviz.github.io/documentation/stable/install.html).
Whenever `pygraphviz` is available, the latest version of `autotwin_pmswsgi`
can be easily installed with `pip`.

    pip install autotwin_pmswsgi

## Deployment
The PMS WSGI is almost ready to be deployed for production use once
`autotwin_pmswsgi` is installed successfully. Four environment variables are
additionally required to specify the [Neo4j](https://github.com/neo4j/neo4j)
instance that holds the SKG of the system under consideration.

| Name             | Description                                              |
|------------------|----------------------------------------------------------|
| `NEO4J_URI`      | URI of the Neo4j instance, e.g. `neo4j://localhost:7687` |
| `NEO4J_USERNAME` | Username for the Neo4j instance, e.g. `neo4j`            |
| `NEO4J_PASSWORD` | Password for the Neo4j instance, e.g. `12345678`         |
| `NEO4J_DATABASE` | Database where the SKG is stored, e.g. `neo4j`           |

After setting the above environment variables, you can start up the PMS WSGI on
a [Waitress](https://github.com/Pylons/waitress) server by executing

    waitress-serve autotwin_pmswsgi:wsgi

## Containerization
To enable containerization, the PMS WSGI is also released as a Docker image,
`ghcr.io/autotwineu/proc-mining-serv`, in the GHCR registry. Suppose that a
Docker engine is running on your machine. Deploying the PMS WSGI on a Docker
container named `proc-mining-serv` can be done via a single command.

    docker run --detach --env NEO4J_URI=<NEO4J_URI> --env NEO4J_USERNAME=<NEO4J_USERNAME> --env NEO4J_PASSWORD=<NEO4J_PASSWORD> --env NEO4J_DATABASE=<NEO4J_DATABASE> --name proc-mining-serv --pull always ghcr.io/autotwineu/proc-mining-serv

`<NEO4J_URI>`, `<NEO4J_USERNAME>`, `<NEO4J_PASSWORD>` and `<NEO4J_DATABASE>`
correspond to the values of the four environment variables required by the PMS
WSGI (see [Deployment](#deployment)).

## RESTful API
The PMS WSGI listens HTTP requests on port `8080` and is accessible through a
RESTful API that exposes the following endpoints for different types of models.
The content types of the request and response for each API endpoint are both
`application/json`.

--------------------------------------------------------------------------------

### API Endpoints for Graph Models

<details>
    <summary>
        <code>POST</code>
        <code><b>/graph-model</b></code>
        <code>(create a graph model in the SKG)</code>
    </summary>
    <br/>

**Parameters**
> None

**Body**
> Definition
>
> | Name                       | Type                    | Default                                   | Description                                                       |
> |----------------------------|-------------------------|-------------------------------------------|-------------------------------------------------------------------|
> | `name`                     | `string`                | `"System"`                                | Name of the system to be discovered                               |
> | `version`                  | `string`                | `""`                                      | Version of the system to be discovered                            |
> | `neo4j:filters:interval`   | `array[number\|string]` | `[0.0, 0.0]`                              | Interval during which events are selected                         |
> | `neo4j:filters:station`    | `array[string]`         | `[]`<sup id="gm-mk-1">[*](#gm-fn-1)</sup> | Set of stations at which events are selected                      |
> | `neo4j:filters:family`     | `array[string]`         | `[]`<sup>[*](#gm-fn-1)</sup>              | Set of families for which events are selected                     |
> | `neo4j:filters:type`       | `array[string]`         | `[]`<sup>[*](#gm-fn-1)</sup>              | Set of types for which events are selected                        |
> | `model:time_unit`          | `string`                | `"s"`                                     | Unified time unit of algorithm and model parameters               |
> | `model:operation:io_ratio` | `number`                | `1.5`                                     | Minimum ratio of input to output for an ATTACH/COMPOSE operation  |
> | `model:operation:co_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to output for an ATTACH/ORDINARY operation |
> | `model:operation:oi_ratio` | `number`                | `1.5`                                     | Minimum ratio of output to input for a DETACH/DECOMPOSE operation |
> | `model:operation:ci_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to input for a DETACH/ORDINARY operation   |
> | `model:formula:ratio`      | `number`                | `0.0`                                     | Minimum ratio of a formula to the primary one                     |
> | `model:delays:seize`       | `number\|string`        | `0.0`                                     | Maximum delay in seizing a queued part                            |
> | `model:delays:release`     | `number\|string`        | `0.0`                                     | Maximum delay in releasing a blocked part                         |
> | `model:cdf:points`         | `number`                | `100`                                     | Maximum number of points in a CDF                                 |
>
> <sup id="gm-fn-1">* An empty array refers to the universe of stations/families/types. [↩](#gm-mk-1)</sup>

> Example
> ```json
> {
>     "name": "Pizza Line",
>     "version": "V4",
>     "neo4j": {
>         "filters": {
>             "interval": [
>                 0,
>                 500000000
>             ],
>             "station": [],
>             "family": [],
>             "type": []
>         }
>     },
>     "model": {
>         "time_unit": "ms",
>         "operation": {
>             "io_ratio": 1.5,
>             "co_ratio": 0.5,
>             "oi_ratio": 1.5,
>             "ci_ratio": 0.5
>         },
>         "formula": {
>             "ratio": 0.06
>         },
>         "delays": {
>             "seize": 30000,
>             "release": 0
>         },
>         "cdf": {
>             "points": 100
>         }
>     }
> }
> ```

**Response**
> Code: 201

> Definition
> 
> | Name       | Type     | Description                     |
> |------------|----------|---------------------------------|
> | `model_id` | `string` | ID of the generated graph model |

> Example
> ```json
> {
>     "model_id": "4:31f61bae-dad6-4cda-bb63-d4700847dea5:620887"
> }
> ```

</details>

--------------------------------------------------------------------------------

### API Endpoints for Petri Nets

<details>
    <summary>
        <code>POST</code>
        <code><b>/petri-net</b></code>
        <code>(create a Petri net in the SKG)</code>
    </summary>
    <br/>

**Parameters**
> None

**Body**
> Definition
>
> | Name                       | Type                    | Default                                   | Description                                                       |
> |----------------------------|-------------------------|-------------------------------------------|-------------------------------------------------------------------|
> | `name`                     | `string`                | `"System"`                                | Name of the system to be discovered                               |
> | `version`                  | `string`                | `""`                                      | Version of the system to be discovered                            |
> | `neo4j:filters:interval`   | `array[number\|string]` | `[0.0, 0.0]`                              | Interval during which events are selected                         |
> | `neo4j:filters:station`    | `array[string]`         | `[]`<sup id="pn-mk-1">[*](#pn-fn-1)</sup> | Set of stations at which events are selected                      |
> | `neo4j:filters:family`     | `array[string]`         | `[]`<sup>[*](#pn-fn-1)</sup>              | Set of families for which events are selected                     |
> | `neo4j:filters:type`       | `array[string]`         | `[]`<sup>[*](#pn-fn-1)</sup>              | Set of types for which events are selected                        |
> | `model:operation:io_ratio` | `number`                | `1.5`                                     | Minimum ratio of input to output for an ATTACH/COMPOSE operation  |
> | `model:operation:co_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to output for an ATTACH/ORDINARY operation |
> | `model:operation:oi_ratio` | `number`                | `1.5`                                     | Minimum ratio of output to input for a DETACH/DECOMPOSE operation |
> | `model:operation:ci_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to input for a DETACH/ORDINARY operation   |
> | `model:formula:ratio`      | `number`                | `0.0`                                     | Minimum ratio of a formula to the primary one                     |
>
> <sup id="pn-fn-1">* An empty array refers to the universe of stations/families/types. [↩](#pn-mk-1)</sup>

> Example
> ```json
> {
>     "name": "Pizza Line",
>     "version": "V4",
>     "neo4j": {
>         "filters": {
>             "interval": [
>                 0,
>                 500000000
>             ],
>             "station": [],
>             "family": [],
>             "type": []
>         }
>     },
>     "model": {
>         "operation": {
>             "io_ratio": 1.5,
>             "co_ratio": 0.5,
>             "oi_ratio": 1.5,
>             "ci_ratio": 0.5
>         },
>         "formula": {
>             "ratio": 0.06
>         }
>     }
> }
> ```

**Response**
> Code: 201

> Definition
> 
> | Name       | Type     | Description                   |
> |------------|----------|-------------------------------|
> | `model_id` | `string` | ID of the generated Petri net |

> Example
> ```json
> {
>     "model_id": "4:31f61bae-dad6-4cda-bb63-d4700847dea5:620887"
> }
> ```

</details>

--------------------------------------------------------------------------------

### API Endpoints for Automata

<details>
    <summary>
        <code>POST</code>
        <code><b>/automaton</b></code>
        <code>(create an automaton in the SKG)</code>
    </summary>
    <br/>

**Parameters**
> None

**Body**
> Definition
>
> | Name                     | Type                    | Default      | Description                               |
> |--------------------------|-------------------------|--------------|-------------------------------------------|
> | `name`                   | `string`                | `"System"`   | Name of the system to be discovered       |
> | `version`                | `string`                | `""`         | Version of the system to be discovered    |
> | `neo4j:filters:interval` | `array[number\|string]` | `[0.0, 0.0]` | Interval during which events are selected |
> | `model:pov`              | `string`                | `"item"`     | Point of view to be focused on            |

> Example
> ```json
> {
>     "name": "Pizza Line",
>     "version": "V4",
>     "neo4j": {
>         "filters": {
>             "interval": [
>                 0,
>                 500000000
>             ]
>         }
>     },
>     "model": {
>         "pov": "item"
>     }
> }
> ```

**Response**
> Code: 201

> Definition
> 
> | Name       | Type     | Description                   |
> |------------|----------|-------------------------------|
> | `model_id` | `string` | ID of the generated automaton |

> Example
> ```json
> {
>     "model_id": "4:31f61bae-dad6-4cda-bb63-d4700847dea5:620887"
> }
> ```

</details>

--------------------------------------------------------------------------------

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AutotwinEU/proc-mining-serv",
    "name": "autotwin_pmswsgi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "auto-twin, system discovery, restful service",
    "author": "Lulai Zhu",
    "author_email": "lulai.zhu@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/4b/96/e4630562f06248e91c72b6b2e088c46ea6cb3333815229f5b6d92c595b8c/autotwin_pmswsgi-0.1.9.tar.gz",
    "platform": null,
    "description": "[![PyPI - License](https://img.shields.io/pypi/l/autotwin_pmswsgi)](https://github.com/AutotwinEU/proc-mining-serv/blob/main/LICENSE)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/autotwin_pmswsgi)](https://www.python.org/downloads/)\n[![PyPI - Version](https://img.shields.io/pypi/v/autotwin_pmswsgi)](https://pypi.org/project/autotwin_pmswsgi/)\n\n# Processing Mining Service (PMS) WSGI for Auto-Twin\n\nThe processing mining service (PMS) WSGI implements a RESTful API that invokes\ndifferent system discovery modules to automatically create, update and delete\ngraph models, Petri nets and automata in a system knowledge graph (SKG).\n\n## Installation\nTo facilitate installation, the PMS WSGI is released as a Python module,\n`autotwin_pmswsgi`, in the PyPI repository. `autotwin_pmswsgi` implicitly\ndepends on `pygraphviz`. This dependency however cannot be resolved\nautomatically by `pip`. As a preparation, you need to install `pygraphviz`\nmanually, following instructions provided\n[here](https://pygraphviz.github.io/documentation/stable/install.html).\nWhenever `pygraphviz` is available, the latest version of `autotwin_pmswsgi`\ncan be easily installed with `pip`.\n\n    pip install autotwin_pmswsgi\n\n## Deployment\nThe PMS WSGI is almost ready to be deployed for production use once\n`autotwin_pmswsgi` is installed successfully. Four environment variables are\nadditionally required to specify the [Neo4j](https://github.com/neo4j/neo4j)\ninstance that holds the SKG of the system under consideration.\n\n| Name             | Description                                              |\n|------------------|----------------------------------------------------------|\n| `NEO4J_URI`      | URI of the Neo4j instance, e.g. `neo4j://localhost:7687` |\n| `NEO4J_USERNAME` | Username for the Neo4j instance, e.g. `neo4j`            |\n| `NEO4J_PASSWORD` | Password for the Neo4j instance, e.g. `12345678`         |\n| `NEO4J_DATABASE` | Database where the SKG is stored, e.g. `neo4j`           |\n\nAfter setting the above environment variables, you can start up the PMS WSGI on\na [Waitress](https://github.com/Pylons/waitress) server by executing\n\n    waitress-serve autotwin_pmswsgi:wsgi\n\n## Containerization\nTo enable containerization, the PMS WSGI is also released as a Docker image,\n`ghcr.io/autotwineu/proc-mining-serv`, in the GHCR registry. Suppose that a\nDocker engine is running on your machine. Deploying the PMS WSGI on a Docker\ncontainer named `proc-mining-serv` can be done via a single command.\n\n    docker run --detach --env NEO4J_URI=<NEO4J_URI> --env NEO4J_USERNAME=<NEO4J_USERNAME> --env NEO4J_PASSWORD=<NEO4J_PASSWORD> --env NEO4J_DATABASE=<NEO4J_DATABASE> --name proc-mining-serv --pull always ghcr.io/autotwineu/proc-mining-serv\n\n`<NEO4J_URI>`, `<NEO4J_USERNAME>`, `<NEO4J_PASSWORD>` and `<NEO4J_DATABASE>`\ncorrespond to the values of the four environment variables required by the PMS\nWSGI (see [Deployment](#deployment)).\n\n## RESTful API\nThe PMS WSGI listens HTTP requests on port `8080` and is accessible through a\nRESTful API that exposes the following endpoints for different types of models.\nThe content types of the request and response for each API endpoint are both\n`application/json`.\n\n--------------------------------------------------------------------------------\n\n### API Endpoints for Graph Models\n\n<details>\n    <summary>\n        <code>POST</code>\n        <code><b>/graph-model</b></code>\n        <code>(create a graph model in the SKG)</code>\n    </summary>\n    <br/>\n\n**Parameters**\n> None\n\n**Body**\n> Definition\n>\n> | Name                       | Type                    | Default                                   | Description                                                       |\n> |----------------------------|-------------------------|-------------------------------------------|-------------------------------------------------------------------|\n> | `name`                     | `string`                | `\"System\"`                                | Name of the system to be discovered                               |\n> | `version`                  | `string`                | `\"\"`                                      | Version of the system to be discovered                            |\n> | `neo4j:filters:interval`   | `array[number\\|string]` | `[0.0, 0.0]`                              | Interval during which events are selected                         |\n> | `neo4j:filters:station`    | `array[string]`         | `[]`<sup id=\"gm-mk-1\">[*](#gm-fn-1)</sup> | Set of stations at which events are selected                      |\n> | `neo4j:filters:family`     | `array[string]`         | `[]`<sup>[*](#gm-fn-1)</sup>              | Set of families for which events are selected                     |\n> | `neo4j:filters:type`       | `array[string]`         | `[]`<sup>[*](#gm-fn-1)</sup>              | Set of types for which events are selected                        |\n> | `model:time_unit`          | `string`                | `\"s\"`                                     | Unified time unit of algorithm and model parameters               |\n> | `model:operation:io_ratio` | `number`                | `1.5`                                     | Minimum ratio of input to output for an ATTACH/COMPOSE operation  |\n> | `model:operation:co_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to output for an ATTACH/ORDINARY operation |\n> | `model:operation:oi_ratio` | `number`                | `1.5`                                     | Minimum ratio of output to input for a DETACH/DECOMPOSE operation |\n> | `model:operation:ci_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to input for a DETACH/ORDINARY operation   |\n> | `model:formula:ratio`      | `number`                | `0.0`                                     | Minimum ratio of a formula to the primary one                     |\n> | `model:delays:seize`       | `number\\|string`        | `0.0`                                     | Maximum delay in seizing a queued part                            |\n> | `model:delays:release`     | `number\\|string`        | `0.0`                                     | Maximum delay in releasing a blocked part                         |\n> | `model:cdf:points`         | `number`                | `100`                                     | Maximum number of points in a CDF                                 |\n>\n> <sup id=\"gm-fn-1\">* An empty array refers to the universe of stations/families/types. [\u21a9](#gm-mk-1)</sup>\n\n> Example\n> ```json\n> {\n>     \"name\": \"Pizza Line\",\n>     \"version\": \"V4\",\n>     \"neo4j\": {\n>         \"filters\": {\n>             \"interval\": [\n>                 0,\n>                 500000000\n>             ],\n>             \"station\": [],\n>             \"family\": [],\n>             \"type\": []\n>         }\n>     },\n>     \"model\": {\n>         \"time_unit\": \"ms\",\n>         \"operation\": {\n>             \"io_ratio\": 1.5,\n>             \"co_ratio\": 0.5,\n>             \"oi_ratio\": 1.5,\n>             \"ci_ratio\": 0.5\n>         },\n>         \"formula\": {\n>             \"ratio\": 0.06\n>         },\n>         \"delays\": {\n>             \"seize\": 30000,\n>             \"release\": 0\n>         },\n>         \"cdf\": {\n>             \"points\": 100\n>         }\n>     }\n> }\n> ```\n\n**Response**\n> Code: 201\n\n> Definition\n> \n> | Name       | Type     | Description                     |\n> |------------|----------|---------------------------------|\n> | `model_id` | `string` | ID of the generated graph model |\n\n> Example\n> ```json\n> {\n>     \"model_id\": \"4:31f61bae-dad6-4cda-bb63-d4700847dea5:620887\"\n> }\n> ```\n\n</details>\n\n--------------------------------------------------------------------------------\n\n### API Endpoints for Petri Nets\n\n<details>\n    <summary>\n        <code>POST</code>\n        <code><b>/petri-net</b></code>\n        <code>(create a Petri net in the SKG)</code>\n    </summary>\n    <br/>\n\n**Parameters**\n> None\n\n**Body**\n> Definition\n>\n> | Name                       | Type                    | Default                                   | Description                                                       |\n> |----------------------------|-------------------------|-------------------------------------------|-------------------------------------------------------------------|\n> | `name`                     | `string`                | `\"System\"`                                | Name of the system to be discovered                               |\n> | `version`                  | `string`                | `\"\"`                                      | Version of the system to be discovered                            |\n> | `neo4j:filters:interval`   | `array[number\\|string]` | `[0.0, 0.0]`                              | Interval during which events are selected                         |\n> | `neo4j:filters:station`    | `array[string]`         | `[]`<sup id=\"pn-mk-1\">[*](#pn-fn-1)</sup> | Set of stations at which events are selected                      |\n> | `neo4j:filters:family`     | `array[string]`         | `[]`<sup>[*](#pn-fn-1)</sup>              | Set of families for which events are selected                     |\n> | `neo4j:filters:type`       | `array[string]`         | `[]`<sup>[*](#pn-fn-1)</sup>              | Set of types for which events are selected                        |\n> | `model:operation:io_ratio` | `number`                | `1.5`                                     | Minimum ratio of input to output for an ATTACH/COMPOSE operation  |\n> | `model:operation:co_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to output for an ATTACH/ORDINARY operation |\n> | `model:operation:oi_ratio` | `number`                | `1.5`                                     | Minimum ratio of output to input for a DETACH/DECOMPOSE operation |\n> | `model:operation:ci_ratio` | `number`                | `0.5`                                     | Minimum ratio of cross to input for a DETACH/ORDINARY operation   |\n> | `model:formula:ratio`      | `number`                | `0.0`                                     | Minimum ratio of a formula to the primary one                     |\n>\n> <sup id=\"pn-fn-1\">* An empty array refers to the universe of stations/families/types. [\u21a9](#pn-mk-1)</sup>\n\n> Example\n> ```json\n> {\n>     \"name\": \"Pizza Line\",\n>     \"version\": \"V4\",\n>     \"neo4j\": {\n>         \"filters\": {\n>             \"interval\": [\n>                 0,\n>                 500000000\n>             ],\n>             \"station\": [],\n>             \"family\": [],\n>             \"type\": []\n>         }\n>     },\n>     \"model\": {\n>         \"operation\": {\n>             \"io_ratio\": 1.5,\n>             \"co_ratio\": 0.5,\n>             \"oi_ratio\": 1.5,\n>             \"ci_ratio\": 0.5\n>         },\n>         \"formula\": {\n>             \"ratio\": 0.06\n>         }\n>     }\n> }\n> ```\n\n**Response**\n> Code: 201\n\n> Definition\n> \n> | Name       | Type     | Description                   |\n> |------------|----------|-------------------------------|\n> | `model_id` | `string` | ID of the generated Petri net |\n\n> Example\n> ```json\n> {\n>     \"model_id\": \"4:31f61bae-dad6-4cda-bb63-d4700847dea5:620887\"\n> }\n> ```\n\n</details>\n\n--------------------------------------------------------------------------------\n\n### API Endpoints for Automata\n\n<details>\n    <summary>\n        <code>POST</code>\n        <code><b>/automaton</b></code>\n        <code>(create an automaton in the SKG)</code>\n    </summary>\n    <br/>\n\n**Parameters**\n> None\n\n**Body**\n> Definition\n>\n> | Name                     | Type                    | Default      | Description                               |\n> |--------------------------|-------------------------|--------------|-------------------------------------------|\n> | `name`                   | `string`                | `\"System\"`   | Name of the system to be discovered       |\n> | `version`                | `string`                | `\"\"`         | Version of the system to be discovered    |\n> | `neo4j:filters:interval` | `array[number\\|string]` | `[0.0, 0.0]` | Interval during which events are selected |\n> | `model:pov`              | `string`                | `\"item\"`     | Point of view to be focused on            |\n\n> Example\n> ```json\n> {\n>     \"name\": \"Pizza Line\",\n>     \"version\": \"V4\",\n>     \"neo4j\": {\n>         \"filters\": {\n>             \"interval\": [\n>                 0,\n>                 500000000\n>             ]\n>         }\n>     },\n>     \"model\": {\n>         \"pov\": \"item\"\n>     }\n> }\n> ```\n\n**Response**\n> Code: 201\n\n> Definition\n> \n> | Name       | Type     | Description                   |\n> |------------|----------|-------------------------------|\n> | `model_id` | `string` | ID of the generated automaton |\n\n> Example\n> ```json\n> {\n>     \"model_id\": \"4:31f61bae-dad6-4cda-bb63-d4700847dea5:620887\"\n> }\n> ```\n\n</details>\n\n--------------------------------------------------------------------------------\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Process Mining Service WSGI for Auto-Twin",
    "version": "0.1.9",
    "project_urls": {
        "Homepage": "https://github.com/AutotwinEU/proc-mining-serv"
    },
    "split_keywords": [
        "auto-twin",
        " system discovery",
        " restful service"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8a6b924a62aac885210df8633558195ca2556c7104eff320bdc220f6eb3219e4",
                "md5": "848531e67248f30eedcee3aba7df304a",
                "sha256": "713ce8556505432f3f5c35d420870234dd483d50030d2c3b2360264e99ad9461"
            },
            "downloads": -1,
            "filename": "autotwin_pmswsgi-0.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "848531e67248f30eedcee3aba7df304a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 6337,
            "upload_time": "2024-12-26T22:56:13",
            "upload_time_iso_8601": "2024-12-26T22:56:13.954092Z",
            "url": "https://files.pythonhosted.org/packages/8a/6b/924a62aac885210df8633558195ca2556c7104eff320bdc220f6eb3219e4/autotwin_pmswsgi-0.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4b96e4630562f06248e91c72b6b2e088c46ea6cb3333815229f5b6d92c595b8c",
                "md5": "a00692d4bad0b5aac29a11f2d422c9f1",
                "sha256": "e0ae37c05868b395213418ac4af11bd45b303d09506fef63d230849e8f500ce6"
            },
            "downloads": -1,
            "filename": "autotwin_pmswsgi-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "a00692d4bad0b5aac29a11f2d422c9f1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 6457,
            "upload_time": "2024-12-26T22:56:16",
            "upload_time_iso_8601": "2024-12-26T22:56:16.018241Z",
            "url": "https://files.pythonhosted.org/packages/4b/96/e4630562f06248e91c72b6b2e088c46ea6cb3333815229f5b6d92c595b8c/autotwin_pmswsgi-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-26 22:56:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AutotwinEU",
    "github_project": "proc-mining-serv",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "autotwin_pmswsgi"
}
        
Elapsed time: 0.58876s