autovf


Nameautovf JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/alicabukel/autovf
Summaryautovf: tuning xgboost with optuna
upload_time2023-06-01 11:25:07
maintainer
docs_urlNone
authorAli Cabukel
requires_python>=3.6
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AutoVF


XGBoost + Optuna:  no brainer

- auto train xgboost directly from CSV files
- auto tune xgboost using optuna
- auto serve best xgboot model using fastapi

NOTE: PRs are currently not accepted. If there are issues/problems, please create an issue.

# Installation

Install using pip

    pip install autovf


# Usage
Training a model using AutoVF is a piece of cake. All you need is some tabular data.

## Parameters

```python

###############################################################################
### required parameters
###############################################################################

# path to training data
train_filename = "data_samples/binary_classification.csv"

# path to output folder to store artifacts
output = "output"

###############################################################################
### optional parameters
###############################################################################

# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None

# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None

# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None

# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]

# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None

# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None

# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True

# number of folds to use for cross-validation
# default is 5
num_folds = 5

# random seed for reproducibility
# default is 42
seed = 42

# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100

# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360

# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False
```

# Python API

To train a new model, you can run:

```python
from autovf import AutoVF


# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"

# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False

# Now its time to train the model!
avf = AutoVF(
    train_filename=train_filename,
    output=output,
    test_filename=test_filename,
    task=task,
    idx=idx,
    targets=targets,
    features=features,
    categorical_features=categorical_features,
    use_gpu=use_gpu,
    num_folds=num_folds,
    seed=seed,
    num_trials=num_trials,
    time_limit=time_limit,
    fast=fast,
)
avf.train()
```

# CLI

Train the model using the `autovf train` command. The parameters are same as above.

```
autovf train \
 --train_filename datasets/30train.csv \
 --output outputs/30days \
 --test_filename datasets/30test.csv \
 --use_gpu
```

You can also serve the trained model using the `autovf serve` command.

```bash
autovf serve --model_path outputs/mll --host 0.0.0.0 --debug
```

To know more about a command, run:

    `autovf <command> --help` 

```
autovf train --help


usage: autovf <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
                                        OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
                                        [--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
                                        [--seed SEED] [--time_limit TIME_LIMIT]

optional arguments:
  -h, --help            show this help message and exit
  --train_filename TRAIN_FILENAME
                        Path to training file
  --test_filename TEST_FILENAME
                        Path to test file
  --output OUTPUT       Path to output directory
  --task {classification,regression}
                        User defined task type
  --idx IDX             ID column
  --targets TARGETS     Target column(s). If there are multiple targets, separate by ';'
  --num_folds NUM_FOLDS
                        Number of folds to use
  --features FEATURES   Features to use, separated by ';'
  --use_gpu             Whether to use GPU for training
  --fast                Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
  --seed SEED           Random seed
  --time_limit TIME_LIMIT
                        Time limit for optimization
```
# autovf

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/alicabukel/autovf",
    "name": "autovf",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "",
    "author": "Ali Cabukel",
    "author_email": "alicabukel@proton.me",
    "download_url": "https://files.pythonhosted.org/packages/73/42/8afd53bef7cd6e6e1707eca754142401ebe2f4c7e7d5dd0170b0e8a8f9d6/autovf-0.0.6.tar.gz",
    "platform": "linux",
    "description": "# AutoVF\n\n\nXGBoost + Optuna:  no brainer\n\n- auto train xgboost directly from CSV files\n- auto tune xgboost using optuna\n- auto serve best xgboot model using fastapi\n\nNOTE: PRs are currently not accepted. If there are issues/problems, please create an issue.\n\n# Installation\n\nInstall using pip\n\n    pip install autovf\n\n\n# Usage\nTraining a model using AutoVF is a piece of cake. All you need is some tabular data.\n\n## Parameters\n\n```python\n\n###############################################################################\n### required parameters\n###############################################################################\n\n# path to training data\ntrain_filename = \"data_samples/binary_classification.csv\"\n\n# path to output folder to store artifacts\noutput = \"output\"\n\n###############################################################################\n### optional parameters\n###############################################################################\n\n# path to test data. if specified, the model will be evaluated on the test data\n# and test_predictions.csv will be saved to the output folder\n# if not specified, only OOF predictions will be saved\n# test_filename = \"test.csv\"\ntest_filename = None\n\n# task: classification or regression\n# if not specified, the task will be inferred automatically\n# task = \"classification\"\n# task = \"regression\"\ntask = None\n\n# an id column\n# if not specified, the id column will be generated automatically with the name `id`\n# idx = \"id\"\nidx = None\n\n# target columns are list of strings\n# if not specified, the target column be assumed to be named `target`\n# and the problem will be treated as one of: binary classification, multiclass classification,\n# or single column regression\n# targets = [\"target\"]\n# targets = [\"target1\", \"target2\"]\ntargets = [\"income\"]\n\n# features columns are list of strings\n# if not specified, all columns except `id`, `targets` & `kfold` columns will be used\n# features = [\"col1\", \"col2\"]\nfeatures = None\n\n# categorical_features are list of strings\n# if not specified, categorical columns will be inferred automatically\n# categorical_features = [\"col1\", \"col2\"]\ncategorical_features = None\n\n# use_gpu is boolean\n# if not specified, GPU is not used\n# use_gpu = True\n# use_gpu = False\nuse_gpu = True\n\n# number of folds to use for cross-validation\n# default is 5\nnum_folds = 5\n\n# random seed for reproducibility\n# default is 42\nseed = 42\n\n# number of optuna trials to run\n# default is 1000\n# num_trials = 1000\nnum_trials = 100\n\n# time_limit for optuna trials in seconds\n# if not specified, timeout is not set and all trials are run\n# time_limit = None\ntime_limit = 360\n\n# if fast is set to True, the hyperparameter tuning will use only one fold\n# however, the model will be trained on all folds in the end\n# to generate OOF predictions and test predictions\n# default is False\n# fast = False\nfast = False\n```\n\n# Python API\n\nTo train a new model, you can run:\n\n```python\nfrom autovf import AutoVF\n\n\n# required parameters:\ntrain_filename = \"data_samples/binary_classification.csv\"\noutput = \"output\"\n\n# optional parameters\ntest_filename = None\ntask = None\nidx = None\ntargets = [\"income\"]\nfeatures = None\ncategorical_features = None\nuse_gpu = True\nnum_folds = 5\nseed = 42\nnum_trials = 100\ntime_limit = 360\nfast = False\n\n# Now its time to train the model!\navf = AutoVF(\n    train_filename=train_filename,\n    output=output,\n    test_filename=test_filename,\n    task=task,\n    idx=idx,\n    targets=targets,\n    features=features,\n    categorical_features=categorical_features,\n    use_gpu=use_gpu,\n    num_folds=num_folds,\n    seed=seed,\n    num_trials=num_trials,\n    time_limit=time_limit,\n    fast=fast,\n)\navf.train()\n```\n\n# CLI\n\nTrain the model using the `autovf train` command. The parameters are same as above.\n\n```\nautovf train \\\n --train_filename datasets/30train.csv \\\n --output outputs/30days \\\n --test_filename datasets/30test.csv \\\n --use_gpu\n```\n\nYou can also serve the trained model using the `autovf serve` command.\n\n```bash\nautovf serve --model_path outputs/mll --host 0.0.0.0 --debug\n```\n\nTo know more about a command, run:\n\n    `autovf <command> --help` \n\n```\nautovf train --help\n\n\nusage: autovf <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output\n                                        OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]\n                                        [--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]\n                                        [--seed SEED] [--time_limit TIME_LIMIT]\n\noptional arguments:\n  -h, --help            show this help message and exit\n  --train_filename TRAIN_FILENAME\n                        Path to training file\n  --test_filename TEST_FILENAME\n                        Path to test file\n  --output OUTPUT       Path to output directory\n  --task {classification,regression}\n                        User defined task type\n  --idx IDX             ID column\n  --targets TARGETS     Target column(s). If there are multiple targets, separate by ';'\n  --num_folds NUM_FOLDS\n                        Number of folds to use\n  --features FEATURES   Features to use, separated by ';'\n  --use_gpu             Whether to use GPU for training\n  --fast                Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set\n  --seed SEED           Random seed\n  --time_limit TIME_LIMIT\n                        Time limit for optimization\n```\n# autovf\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "autovf: tuning xgboost with optuna",
    "version": "0.0.6",
    "project_urls": {
        "Homepage": "https://github.com/alicabukel/autovf"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3cfa7fc42182dbd081fce4a8078f12ef18ee3d17fb3c7f821652fde1686b2925",
                "md5": "6fdc48c1ea8a340bbf2dce599c6ef384",
                "sha256": "c30c36a27cc6d1604217ec3da3391c7c18496a6880a8f0ec012625a4c89c1624"
            },
            "downloads": -1,
            "filename": "autovf-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6fdc48c1ea8a340bbf2dce599c6ef384",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 21368,
            "upload_time": "2023-06-01T11:25:04",
            "upload_time_iso_8601": "2023-06-01T11:25:04.418745Z",
            "url": "https://files.pythonhosted.org/packages/3c/fa/7fc42182dbd081fce4a8078f12ef18ee3d17fb3c7f821652fde1686b2925/autovf-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "73428afd53bef7cd6e6e1707eca754142401ebe2f4c7e7d5dd0170b0e8a8f9d6",
                "md5": "2106bb1fe8ff00ad55c86388bbd329c3",
                "sha256": "988926e397db2a5cfb145320d7d7fee6be536b01ae456695e52bbd8240d8d996"
            },
            "downloads": -1,
            "filename": "autovf-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "2106bb1fe8ff00ad55c86388bbd329c3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 19728,
            "upload_time": "2023-06-01T11:25:07",
            "upload_time_iso_8601": "2023-06-01T11:25:07.036434Z",
            "url": "https://files.pythonhosted.org/packages/73/42/8afd53bef7cd6e6e1707eca754142401ebe2f4c7e7d5dd0170b0e8a8f9d6/autovf-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-01 11:25:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "alicabukel",
    "github_project": "autovf",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "autovf"
}
        
Elapsed time: 0.13815s