<div align="center">
<img src="https://autrainer.github.io/autrainer/_images/logo_banner.png" alt="autrainer — A Modular and Extensible Deep Learning Toolkit for Computer Audition Tasks">
</div>
# autrainer
[![autrainer PyPI Version](https://img.shields.io/pypi/v/autrainer?logo=pypi&logoColor=b4befe&color=b4befe)](https://pypi.org/project/autrainer/)
[![autrainer Python Versions](https://img.shields.io/pypi/pyversions/autrainer?logo=python&logoColor=b4befe&color=b4befe)](https://pypi.org/project/autrainer/)
[![autrainer Hugging Face](https://img.shields.io/badge/Hugging_Face-autrainer-b4befe?logo=huggingface&logoColor=b4befe)](https://huggingface.co/autrainer)
[![autrainer GitHub License](https://img.shields.io/badge/license-MIT-b4befe?logo=c)](https://github.com/autrainer/autrainer/blob/main/LICENSE)
A Modular and Extensible Deep Learning Toolkit for Computer Audition Tasks.
_autrainer_ is built on top of [PyTorch](https://pytorch.org/) and [Hydra](https://hydra.cc/),
offering a modular and extensible way to perform reproducible deep learning experiments
for computer audition tasks using YAML configuration files and the command line.
## Installation
To install _autrainer_, first ensure that PyTorch (along with torchvision and torchaudio) version 2.0 or higher is installed.
For installation instructions, refer to the [PyTorch website](https://pytorch.org/get-started/locally/).
It is recommended to install _autrainer_ within a virtual environment.
To create a new virtual environment, refer to the [Python venv documentation](https://docs.python.org/3/library/venv.html).
Next, install _autrainer_ using _pip_.
```bash
pip install autrainer
```
The following optional dependencies can be installed to enable additional features:
- `latex` for LaTeX plotting (requires a LaTeX installation).
- `mlflow` for [MLflow](https://mlflow.org/) logging.
- `tensorboard` for [TensorBoard](https://www.tensorflow.org/tensorboard) logging.
- `opensmile` for audio feature extraction with [openSMILE](https://audeering.com/opensmile/).
- `albumentations` for image augmentations with [Albumentations](https://albumentations.ai/).
- `audiomentations` for audio augmentations with [audiomentations](https://github.com/iver56/audiomentations).
- `torch-audiomentations` for audio augmentations with [torch-audiomentations](https://github.com/asteroid-team/torch-audiomentations).
To install _autrainer_ with all optional dependencies, use the following command:
```bash
pip install autrainer[all]
```
To install _autrainer_ from source, refer to the [contribution guide](https://autrainer.github.io/autrainer/development/contributing.html).
## Next Steps
To get started using _autrainer_, the [quickstart guide](https://autrainer.github.io/autrainer/usage/quickstart.html) outlines the creation of a simple training configuration
and [tutorials](https://autrainer.github.io/autrainer/usage/tutorials.html) provide examples for implementing custom modules including their configurations.
For a complete list of available CLI commands, refer to the [CLI reference](https://autrainer.github.io/autrainer/usage/cli_reference.html) or the [CLI wrapper](https://autrainer.github.io/autrainer/usage/cli_wrapper.html).
Raw data
{
"_id": null,
"home_page": "https://github.com/autrainer/autrainer",
"name": "autrainer",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "computer audition, deep learning, artificial intelligence, pytorch, hydra-core, command-line, yaml",
"author": "Simon Rampp",
"author_email": "simon.rampp@tum.de",
"download_url": "https://files.pythonhosted.org/packages/6a/9b/5b0bddf1fb8169a376227da30870c8c41012f7b97a89c6b8d4cc193d2aca/autrainer-0.4.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <img src=\"https://autrainer.github.io/autrainer/_images/logo_banner.png\" alt=\"autrainer \u2014 A Modular and Extensible Deep Learning Toolkit for Computer Audition Tasks\">\n</div>\n\n# autrainer\n\n[![autrainer PyPI Version](https://img.shields.io/pypi/v/autrainer?logo=pypi&logoColor=b4befe&color=b4befe)](https://pypi.org/project/autrainer/)\n[![autrainer Python Versions](https://img.shields.io/pypi/pyversions/autrainer?logo=python&logoColor=b4befe&color=b4befe)](https://pypi.org/project/autrainer/)\n[![autrainer Hugging Face](https://img.shields.io/badge/Hugging_Face-autrainer-b4befe?logo=huggingface&logoColor=b4befe)](https://huggingface.co/autrainer)\n[![autrainer GitHub License](https://img.shields.io/badge/license-MIT-b4befe?logo=c)](https://github.com/autrainer/autrainer/blob/main/LICENSE)\n\nA Modular and Extensible Deep Learning Toolkit for Computer Audition Tasks.\n\n_autrainer_ is built on top of [PyTorch](https://pytorch.org/) and [Hydra](https://hydra.cc/),\noffering a modular and extensible way to perform reproducible deep learning experiments\nfor computer audition tasks using YAML configuration files and the command line.\n\n## Installation\n\nTo install _autrainer_, first ensure that PyTorch (along with torchvision and torchaudio) version 2.0 or higher is installed.\nFor installation instructions, refer to the [PyTorch website](https://pytorch.org/get-started/locally/).\n\nIt is recommended to install _autrainer_ within a virtual environment.\nTo create a new virtual environment, refer to the [Python venv documentation](https://docs.python.org/3/library/venv.html).\n\nNext, install _autrainer_ using _pip_.\n\n```bash\npip install autrainer\n```\n\nThe following optional dependencies can be installed to enable additional features:\n\n- `latex` for LaTeX plotting (requires a LaTeX installation).\n- `mlflow` for [MLflow](https://mlflow.org/) logging.\n- `tensorboard` for [TensorBoard](https://www.tensorflow.org/tensorboard) logging.\n- `opensmile` for audio feature extraction with [openSMILE](https://audeering.com/opensmile/).\n- `albumentations` for image augmentations with [Albumentations](https://albumentations.ai/).\n- `audiomentations` for audio augmentations with [audiomentations](https://github.com/iver56/audiomentations).\n- `torch-audiomentations` for audio augmentations with [torch-audiomentations](https://github.com/asteroid-team/torch-audiomentations).\n\nTo install _autrainer_ with all optional dependencies, use the following command:\n\n```bash\npip install autrainer[all]\n```\n\nTo install _autrainer_ from source, refer to the [contribution guide](https://autrainer.github.io/autrainer/development/contributing.html).\n\n## Next Steps\n\nTo get started using _autrainer_, the [quickstart guide](https://autrainer.github.io/autrainer/usage/quickstart.html) outlines the creation of a simple training configuration\nand [tutorials](https://autrainer.github.io/autrainer/usage/tutorials.html) provide examples for implementing custom modules including their configurations.\n\nFor a complete list of available CLI commands, refer to the [CLI reference](https://autrainer.github.io/autrainer/usage/cli_reference.html) or the [CLI wrapper](https://autrainer.github.io/autrainer/usage/cli_wrapper.html).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Modular and Extensible Deep Learning Toolkit for Computer Audition Tasks.",
"version": "0.4.0",
"project_urls": {
"Documentation": "https://autrainer.github.io/autrainer/",
"Homepage": "https://github.com/autrainer/autrainer",
"Repository": "https://github.com/autrainer/autrainer"
},
"split_keywords": [
"computer audition",
" deep learning",
" artificial intelligence",
" pytorch",
" hydra-core",
" command-line",
" yaml"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "798947bc66b3623d3aae842a960682b16355f2a073ef50b119298df6b772810b",
"md5": "4893d42ea400a609762c298dbf7c3c06",
"sha256": "970efdc1d1b31b5dc171cfd13ff738417a1af4dd1b20d1f1752d2e755d2743da"
},
"downloads": -1,
"filename": "autrainer-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4893d42ea400a609762c298dbf7c3c06",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 253288,
"upload_time": "2024-10-25T17:29:36",
"upload_time_iso_8601": "2024-10-25T17:29:36.267164Z",
"url": "https://files.pythonhosted.org/packages/79/89/47bc66b3623d3aae842a960682b16355f2a073ef50b119298df6b772810b/autrainer-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6a9b5b0bddf1fb8169a376227da30870c8c41012f7b97a89c6b8d4cc193d2aca",
"md5": "de1fabade1ec1b31599ad3e026e55dfb",
"sha256": "1e7988bce378402baaad937de93f8417b13fa682c40454db14d1867f05e188c0"
},
"downloads": -1,
"filename": "autrainer-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "de1fabade1ec1b31599ad3e026e55dfb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 118275,
"upload_time": "2024-10-25T17:29:37",
"upload_time_iso_8601": "2024-10-25T17:29:37.675124Z",
"url": "https://files.pythonhosted.org/packages/6a/9b/5b0bddf1fb8169a376227da30870c8c41012f7b97a89c6b8d4cc193d2aca/autrainer-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-25 17:29:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "autrainer",
"github_project": "autrainer",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "autrainer"
}