avcuda


Nameavcuda JSON
Version 0.2.4 PyPI version JSON
download
home_pageNone
SummaryPyAV extension with hardware encoding/decoding support on Nvidia GPUs.
upload_time2024-11-08 08:30:35
maintainerNone
docs_urlNone
authorMatteo Destro
requires_pythonNone
licenseMIT License Copyright (c) 2024 Matteo Destro Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords av cuda torch ffmpeg libav video
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyAV-CUDA
[![PyPI version](https://img.shields.io/pypi/v/avcuda)](https://pypi.org/project/avcuda/)

**PyAV-CUDA** is an extension of [PyAV](https://github.com/PyAV-Org/PyAV) that adds support for hardware-accelerated video decoding using Nvidia GPUs. It integrates with FFmpeg and PyTorch, providing CUDA-accelerated kernels for efficient color space conversion.

## Installation

1. Build and install FFmpeg with [hardware acceleration support](https://pytorch.org/audio/stable/build.ffmpeg.html).

2. To enable hardware acceleration in PyAV, it needs to be reinstalled from source. Assuming FFmpeg is installed in `/opt/ffmpeg`, run:
    ```bash
    pip uninstall av
    PKG_CONFIG_LIBDIR="/opt/ffmpeg/lib/pkgconfig" pip install av --no-binary av --no-cache
    ```
    If the installation was successful, `h264_cuvid` should appear between the available codecs:
    ```python
    import av
    print(av.codecs_available)
    ```

3. Install PyAV-CUDA:
    ```bash
    PKG_CONFIG_LIBDIR="/opt/ffmpeg/lib/pkgconfig" CUDA_HOME="/usr/local/cuda" pip install avcuda
    ```

4. Test the installation by running `python examples/benchmark_decode.py`. The output should show something like:
    ```
    Running CPU decoding... took 34.99s
    Running GPU decoding... took 8.30s
    ```


## Usage

### Decoding

```python
import av
import avcuda

CUDA_DEVICE = 0

with av.open("video.mp4") as container:
    stream = container.streams.video[0]
    avcuda.init_hwcontext(stream.codec_context, CUDA_DEVICE)

    for avframe in container.decode(stream):
        frame_tensor = avcuda.to_tensor(avframe, CUDA_DEVICE)
```

### Encoding

```python
import av
import avcuda

CUDA_DEVICE = 0

NUM_FRAMES = 100
FPS = 30
WIDTH = 640
HEIGHT = 480

with av.open("video.mp4", "w") as container:
    stream = container.add_stream("h264_nvenc", rate=FPS)
    stream.pix_fmt, stream.width, stream.height = "yuv420p", WIDTH, HEIGHT

    avcuda.init_hwcontext(stream.codec_context, CUDA_DEVICE)

    for _ in range(NUM_FRAMES):
        frame_tensor = torch.randint(0, 255, (HEIGHT, WIDTH, 3), dtype=torch.uint8, device=CUDA_DEVICE)
        avframe = avcuda.from_tensor(frame_tensor, stream.codec_context) 

        for packet in stream.encode(avframe):
            container.mux(packet)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "avcuda",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "av, cuda, torch, ffmpeg, libav, video",
    "author": "Matteo Destro",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/9b/0d/b5edffba19eae88a75e06a280488b9c41a84963a7da99efc5554436d7252/avcuda-0.2.4.tar.gz",
    "platform": null,
    "description": "# PyAV-CUDA\n[![PyPI version](https://img.shields.io/pypi/v/avcuda)](https://pypi.org/project/avcuda/)\n\n**PyAV-CUDA** is an extension of [PyAV](https://github.com/PyAV-Org/PyAV) that adds support for hardware-accelerated video decoding using Nvidia GPUs. It integrates with FFmpeg and PyTorch, providing CUDA-accelerated kernels for efficient color space conversion.\n\n## Installation\n\n1. Build and install FFmpeg with [hardware acceleration support](https://pytorch.org/audio/stable/build.ffmpeg.html).\n\n2. To enable hardware acceleration in PyAV, it needs to be reinstalled from source. Assuming FFmpeg is installed in `/opt/ffmpeg`, run:\n    ```bash\n    pip uninstall av\n    PKG_CONFIG_LIBDIR=\"/opt/ffmpeg/lib/pkgconfig\" pip install av --no-binary av --no-cache\n    ```\n    If the installation was successful, `h264_cuvid` should appear between the available codecs:\n    ```python\n    import av\n    print(av.codecs_available)\n    ```\n\n3. Install PyAV-CUDA:\n    ```bash\n    PKG_CONFIG_LIBDIR=\"/opt/ffmpeg/lib/pkgconfig\" CUDA_HOME=\"/usr/local/cuda\" pip install avcuda\n    ```\n\n4. Test the installation by running `python examples/benchmark_decode.py`. The output should show something like:\n    ```\n    Running CPU decoding... took 34.99s\n    Running GPU decoding... took 8.30s\n    ```\n\n\n## Usage\n\n### Decoding\n\n```python\nimport av\nimport avcuda\n\nCUDA_DEVICE = 0\n\nwith av.open(\"video.mp4\") as container:\n    stream = container.streams.video[0]\n    avcuda.init_hwcontext(stream.codec_context, CUDA_DEVICE)\n\n    for avframe in container.decode(stream):\n        frame_tensor = avcuda.to_tensor(avframe, CUDA_DEVICE)\n```\n\n### Encoding\n\n```python\nimport av\nimport avcuda\n\nCUDA_DEVICE = 0\n\nNUM_FRAMES = 100\nFPS = 30\nWIDTH = 640\nHEIGHT = 480\n\nwith av.open(\"video.mp4\", \"w\") as container:\n    stream = container.add_stream(\"h264_nvenc\", rate=FPS)\n    stream.pix_fmt, stream.width, stream.height = \"yuv420p\", WIDTH, HEIGHT\n\n    avcuda.init_hwcontext(stream.codec_context, CUDA_DEVICE)\n\n    for _ in range(NUM_FRAMES):\n        frame_tensor = torch.randint(0, 255, (HEIGHT, WIDTH, 3), dtype=torch.uint8, device=CUDA_DEVICE)\n        avframe = avcuda.from_tensor(frame_tensor, stream.codec_context) \n\n        for packet in stream.encode(avframe):\n            container.mux(packet)\n```\n",
    "bugtrack_url": null,
    "license": "MIT License  Copyright (c) 2024 Matteo Destro  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
    "summary": "PyAV extension with hardware encoding/decoding support on Nvidia GPUs.",
    "version": "0.2.4",
    "project_urls": {
        "Homepage": "https://github.com/materight/PyAV-CUDA.git",
        "Repository": "https://github.com/materight/PyAV-CUDA.git"
    },
    "split_keywords": [
        "av",
        " cuda",
        " torch",
        " ffmpeg",
        " libav",
        " video"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9b0db5edffba19eae88a75e06a280488b9c41a84963a7da99efc5554436d7252",
                "md5": "a5c930b7d2608c8aa3736613364fb2ae",
                "sha256": "3a815255c5639dbc1a6a97f03e06fd24c1d1ace6aced7b713f9bf7a2becaca0f"
            },
            "downloads": -1,
            "filename": "avcuda-0.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "a5c930b7d2608c8aa3736613364fb2ae",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8898,
            "upload_time": "2024-11-08T08:30:35",
            "upload_time_iso_8601": "2024-11-08T08:30:35.725186Z",
            "url": "https://files.pythonhosted.org/packages/9b/0d/b5edffba19eae88a75e06a280488b9c41a84963a7da99efc5554436d7252/avcuda-0.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-08 08:30:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "materight",
    "github_project": "PyAV-CUDA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "avcuda"
}
        
Elapsed time: 0.82454s