avhardware


Nameavhardware JSON
Version 0.1.6 PyPI version JSON
download
home_pageNone
SummaryPyAV extension with hardware decoding support.
upload_time2024-09-01 10:12:46
maintainerNone
docs_urlNone
authorMatteo Destro
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyAV-Hardware
[![PyPI version](https://img.shields.io/pypi/v/avhardware)](https://pypi.org/project/avhardware/)

**PyAV-Hardware** is an extension of [PyAV](https://github.com/PyAV-Org/PyAV) that adds support for hardware-accelerated video decoding using Nvidia GPUs. It integrates with FFmpeg and PyTorch, providing CUDA-accelerated kernels for efficient color space conversion.

## Installation

1. Build and install FFmpeg with [hardware acceleration support](https://pytorch.org/audio/stable/build.ffmpeg.html).

2. To enable hardware acceleration in PyAV, it needs to be reinstalled from source. Assuming FFmpeg is installed in `/opt/ffmpeg`, run:
    ```bash
    pip uninstall av
    PKG_CONFIG_LIBDIR="/opt/ffmpeg/lib/pkgconfig" pip install av --no-binary av --no-cache
    ```
    If the installation was successful, `h264_cuvid` should appear between the available codecs:
    ```python
    import av
    print(av.codecs_available)
    ```

3. Install PyAV-Hardware:
    ```bash
    PKG_CONFIG_LIBDIR="/opt/ffmpeg/lib/pkgconfig" CUDA_HOME="/usr/local/cuda" pip install avhwardware
    ```

4. Test the installation by running `python examples/benchmark.py`. The output should show something like:
    ```
    Running CPU decoding... took 34.99s
    Running GPU decoding... took 8.30s
    ```


## Usage

To use hardware decoding, instantiate an `HWDeviceContext` and attach it to a `VideoStream`. Note that an `HWDeviceContext` can be shared by multiple `VideoStream` instances to save memory.

```python
import av
import avhardware

CUDA_DEVICE = 0

with (
    av.open("video.mp4") as container,
    avhardware.HWDeviceContext(CUDA_DEVICE) as hwdevice_ctx,
):
        stream = container.streams.video[0]
        hwdevice_ctx.attach(stream.codec_context)

        # Convert frames into RGB PyTorch tensors on the same device
        for frame in container.decode(stream):
            frame_tensor = hwdevice_ctx.to_tensor(frame)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "avhardware",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Matteo Destro",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/29/e8/d13463ad7b84b4634d831128d0ded5beb058577779fc876a90339449636f/avhardware-0.1.6.tar.gz",
    "platform": null,
    "description": "# PyAV-Hardware\n[![PyPI version](https://img.shields.io/pypi/v/avhardware)](https://pypi.org/project/avhardware/)\n\n**PyAV-Hardware** is an extension of [PyAV](https://github.com/PyAV-Org/PyAV) that adds support for hardware-accelerated video decoding using Nvidia GPUs. It integrates with FFmpeg and PyTorch, providing CUDA-accelerated kernels for efficient color space conversion.\n\n## Installation\n\n1. Build and install FFmpeg with [hardware acceleration support](https://pytorch.org/audio/stable/build.ffmpeg.html).\n\n2. To enable hardware acceleration in PyAV, it needs to be reinstalled from source. Assuming FFmpeg is installed in `/opt/ffmpeg`, run:\n    ```bash\n    pip uninstall av\n    PKG_CONFIG_LIBDIR=\"/opt/ffmpeg/lib/pkgconfig\" pip install av --no-binary av --no-cache\n    ```\n    If the installation was successful, `h264_cuvid` should appear between the available codecs:\n    ```python\n    import av\n    print(av.codecs_available)\n    ```\n\n3. Install PyAV-Hardware:\n    ```bash\n    PKG_CONFIG_LIBDIR=\"/opt/ffmpeg/lib/pkgconfig\" CUDA_HOME=\"/usr/local/cuda\" pip install avhwardware\n    ```\n\n4. Test the installation by running `python examples/benchmark.py`. The output should show something like:\n    ```\n    Running CPU decoding... took 34.99s\n    Running GPU decoding... took 8.30s\n    ```\n\n\n## Usage\n\nTo use hardware decoding, instantiate an `HWDeviceContext` and attach it to a `VideoStream`. Note that an `HWDeviceContext` can be shared by multiple `VideoStream` instances to save memory.\n\n```python\nimport av\nimport avhardware\n\nCUDA_DEVICE = 0\n\nwith (\n    av.open(\"video.mp4\") as container,\n    avhardware.HWDeviceContext(CUDA_DEVICE) as hwdevice_ctx,\n):\n        stream = container.streams.video[0]\n        hwdevice_ctx.attach(stream.codec_context)\n\n        # Convert frames into RGB PyTorch tensors on the same device\n        for frame in container.decode(stream):\n            frame_tensor = hwdevice_ctx.to_tensor(frame)\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "PyAV extension with hardware decoding support.",
    "version": "0.1.6",
    "project_urls": {
        "Repository": "https://github.com/materight/PyAV-Hardware.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "29e8d13463ad7b84b4634d831128d0ded5beb058577779fc876a90339449636f",
                "md5": "48b7ebe9a4429899ebfd3c2bb362b037",
                "sha256": "725c105e329c58426484e3d7196c6a6301be942a72d9e1e5e2038ada3c40b0ea"
            },
            "downloads": -1,
            "filename": "avhardware-0.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "48b7ebe9a4429899ebfd3c2bb362b037",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6596,
            "upload_time": "2024-09-01T10:12:46",
            "upload_time_iso_8601": "2024-09-01T10:12:46.198045Z",
            "url": "https://files.pythonhosted.org/packages/29/e8/d13463ad7b84b4634d831128d0ded5beb058577779fc876a90339449636f/avhardware-0.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-01 10:12:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "materight",
    "github_project": "PyAV-Hardware",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "avhardware"
}
        
Elapsed time: 0.44053s