![Python Version](https://img.shields.io/badge/python-3.11-blue/)
![aznt version](https://img.shields.io/badge/aznt-0.0.44-green)
![Beta version](https://img.shields.io/badge/beta-ver.-green)
# `aznt` - From A to Z Number Theory
* Number Theory library for Python with prime numbers.
* **Important:** requires Python >= 3.11.
* You can pass to author's GitHub at
[adrianzapala.github.io](https://adrianzapala.github.io/).
# Install
```python
pip install aznt
```
# Imports
The package `aznt` includes three modules: `azntnumbers`, `azntprimality` and `azntplots`.<br>
**<span style="color: coral">Examples</span>**
```python
import aznt.azntnumbers as azn
import aznt.azntprimality as azpr
import aznt.azntplots as azpt
```
# General info about performance
When working with numbers
with a large number of digits, calculation results slow down quickly.
This is especially true for algorithms such as factorization,
searching for dividers etc. So for many large numbers,
it can take a very long time to get results.
# Usage: `azntnumbers` module functions
## `factorization(n)`
Return prime factors of a number from a function argument.<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> factorization(8)
[2, 2, 2]
>>> factorization(1123243)
[11, 11, 9283]
>>> factorization(20570952)
[2, 2, 2, 3, 17, 127, 397]
```
## `dividers_naive(n)`
Returns divisors of a number from a function argument. It returns
a list of these divisors.<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> dividers_naive(1123243)
[1, 11, 121, 9283, 102113, 1123243]
>>> dividers_naive(20570952)
[1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 127, 136, 204, 254, 381, 397, 408, 508, 762, 794, 1016, 1191, 1524, 1588, 2159, 2382, 3048, 3176, 4318, 4764, 6477, 6749, 8636, 9528, 12954, 13498, 17272, 20247, 25908, 26996, 40494, 50419, 51816, 53992, 80988, 100838, 151257, 161976, 201676, 302514, 403352, 605028, 857123, 1210056, 1714246, 2571369, 3428492, 5142738, 6856984, 10285476, 20570952]
```
## `dividers_opt(n)`
This function calculates divisors in pairs, which multiplication product creates
a number from function argument. If the argument is default (`pairs=False`)
and also if the numbers from these pairs are different it puts these pairs on the
list and then sort list (if the numbers are equal, it's placing only one number on the list).
Alternatively, if the argument is `True` it join pairs of divisors (may be
equal) into tuples and then append them into a list.<br>
This function works pretty much faster than `dividers_naive()` function.<br>
Time complexity: `O(sqrt(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
dividers_opt(100)
[1, 2, 4, 5, 10, 20, 25, 50, 100]
dividers_opt(100, pairs=True)
[(1, 100), (2, 50), (4, 25), (5, 20), (10, 10)]
```
## `tau(n)`
Count the number of divisors of an integer (including 1 and the number itself).<br>
Time complexity: `O(sqrt(n))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> tau(6)
4
>>> tau(4356)
27
>>> tau(12499674)
16
```
## `sigma(n)`
Return the sum of divisors of an integer
(including 1 and the number itself).<br>
Time complexity: `O(sqrt(n)))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> sigma(3)
4
>>> sigma(343532)
687120
```
## `s(n)`
Return the sum of proper divisors of an integer
(excluding `n` itself).<br>
Time complexity: `O(sqrt(n)))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> s(3)
1
>>> s(4438)
3194
```
## `gcd_mod(a, b)`
Return Greatest Common Divisor (GCD) of two positive integers using Euclidean algorithm
with division.<br>
Time complexity: `O(log n))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> gcd_mod(36, 882)
18
>>> gcd_mod(363, 1287)
33
>>> gcd_mod(23, 3456)
1
>>> gcd_mod(484, 56)
4
```
## `gcd_subtract(a, b)`
Return Greatest Common Divisor (GCD) of two positive integers using Euclidean algorithm
with subtraction.<br>
Time complexity: `O(n))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> gcd_subtract(36, 882)
18
>>> gcd_subtract(363, 1287)
33
>>> gcd_subtract(23, 3456)
1
>>> gcd_subtract(484, 56)
4
```
## `lcm(a, b)`
Return Lowest Common Multiple (LCM) of two positive integers.<br>
Time complexity: `O(log n))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> lcm(36, 882)
1764
>>> lcm(363, 1287)
14157
>>> lcm(23, 3456)
79488
>>> lcm(484, 56)
6776
```
## `is_gcd_eq_1(n, floor, ceil)`
Return a tuple. First
element of a tuple is a quantity of pairs of numbers which
are relatively prime to themselves, the second element is a density of them and
the third element is a list of nested lists of them.
All pairs are randomly generated from `floor`
to `ceil` of numbers range (`n`). Based on that a variety of different
outputs can be possible for the same parameters.<br>
Time complexity: `O(n log n))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_gcd_eq_1(25, 100, 10000)
(15, 0.6, [[1470, 8779], [8447, 5117], [7852, 5597], [8111, 7225], [5375, 6721], [9191, 4239], [7101, 6361], [1099, 211], [7036, 9515], [5281, 7212], [948, 2471], [3451, 4541], [3896, 9463], [8006, 845], [4448, 4803]])
>>> is_gcd_eq_1(25, 100, 10000)
(13, 0.52, [[7271, 5402], [9505, 5791], [8608, 1811], [6017, 9782], [1784, 3439], [8135, 9444], [3979, 9078], [2849, 2677], [888, 8171], [6399, 6145], [6647, 3679], [3697, 7051], [557, 553]])
```
## `totient(n)`
Return Euler's totient function (phi) which counts the positive integers up to
a given integer `n` that are relatively prime to `n`.<br>
Time complexity: `O(log n))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> totient(4)
2
>>> totient(24)
8
>>> totient(424235)
253440
```
## `pnt(n)`
Return the asymptotic distribution of the prime numbers among
the positive integers.<br>
Time complexity: `O(log n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> pnt(1000)
144.76482730108395 // Real value: 168
>>> pnt(1000000)
72382.41365054197 // Real value: 78498
```
## `prime_probability(n)`
Return probability if a random number is prime to a specific ceil given.<br>
Time complexity: `O(log n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> prime_probability(100)
0.21714724095162588
>>> prime_probability(1000)
0.14476482730108395
```
## `basel_problem(max, n=2)`
Return precise summation of the reciprocals of the squares of the
natural numbers, i.e. the precise sum of the infinite series.
The sum of the series is approximately
equal to 1.644934 (pi^2 / 6 for `n` = 2).<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> basel_problem(345567)
1.6449311730576142
>>> basel_problem(2568, n=4)
1.0823232336914694
```
## `is_mersenne(m)`
Check if a number is Mersenne number, M = 2^n - 1 (prime or composite). Returns a four-element tuple. First element is boolean value - `True` or `False`.
If `True`, then second argument is M with exponent, third is the number in exponent (scientific) notation and the last is whole number.<br>
Time complexity: `O(log n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_mersenne(0)
Argument: 0. Mersenne numbers starts from 1.
>>> is_mersenne(1)
(True, 'M1', '1.00e+00', 1)
>>> is_mersenne(2)
False
>>> is_mersenne(7)
(True, 'M3', '7.00e+00', 7)
>>> is_mersenne(100)
False
>>> is_mersenne(255)
(True, 'M8', '2.55e+02', 255)
>>> is_mersenne(511)
(True, 'M9', '5.11e+02', 511)
>>> is_mersenne(1023)
(True, 'M10', '1.02e+03', 1023)
>>> is_mersenne(604462909807314587353087)
(True, 'M79', '6.04e+23', 604462909807314587353087)
```
## `is_fermat(f)`
Check if a number is Fermat number, F = 2^2^n - 1 (prime or composite). Returns a four-element tuple. First element is boolean value - `True` or `False`.
If `True`, then second argument is F with exponent, third is the number in exponent (scientific) notation and the last is whole number.<br>
Time complexity: `O(log (log n))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_fermat(-3)
Argument: -3. Fermat numbers starts from 3.
>>> is_fermat(1)
Argument: 1. Fermat numbers starts from 3.
>>> is_fermat(3)
(True, 'F0', '3.00e+00', 3)
>>> is_fermat(5)
(True, 'F1', '5.00e+00', 5)
>>> is_fermat(7)
False
>>> is_fermat(17)
(True, 'F2', '1.70e+01', 17)
>>> is_fermat(257)
(True, 'F3', '2.57e+02', 257)
>>> is_fermat(65537)
(True, 'F4', '6.55e+04', 65537)
>>> is_fermat(4294967297)
(True, 'F5', '4.29e+09', 4294967297)
>>> is_fermat(18446744073709551617)
(True, 'F6', '1.84e+19', 18446744073709551617)
>>> is_fermat(340282366920938463463374607431768211457)
(True, 'F7', '3.40e+38', 340282366920938463463374607431768211457)
>>> is_fermat(115792089237316195423570985008687907853269984665640564039457584007913129639937)
(True, 'F8', '1.16e+77', 115792089237316195423570985008687907853269984665640564039457584007913129639937)
>>> is_fermat(13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097)
(True, 'F9', '1.34e+154', 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097)
```
## `is_perfect(n)`
Check if a number is perfect number. If so, returns True, False otherwise.<br>
Time complexity: `O(sqrt(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_perfect(7)
False
>>> is_perfect(8128)
True
```
## `zeta_trivial_value(s, n=10000)`
Return **trivial** (real) value of Riemann zeta function for given argument, where `s` is zeta
function argument, and `n` is number of terms in the series of zeta.<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> zeta_trivial_value(-49)
-1.5001733492153957e+23
>>> zeta_trivial_value(-31)
472384867.72163075
>>> zeta_trivial_value(-19)
26.45621212121214
>>> zeta_trivial_value(-15)
0.44325980392156883
>>> zeta_trivial_value(-5)
-0.003968253968253967
>>> zeta_trivial_value(-4)
0
>>> zeta_trivial_value(0)
0.5
>>> zeta_trivial_value(.1)
-0.6029256240132325
>>> zeta_trivial_value(.5)
-1.4482837427744006
>>> zeta_trivial_value(1)
inf
>>> zeta_trivial_value(5)
1.0369277551433702
>>> zeta_trivial_value(33)
1.0000000001164155
>>> zeta_trivial_value(50)
1.0000000000000009
```
## `nontrivial_zeros_dist(t)`
Return average distance between zeros on a critical line in Riemann zeta function.<br>
Time complexity: `O(log n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> nontrivial_zeros_dist(20)
5.426572570049043
>>> nontrivial_zeros_dist(100)
2.2705167236263177
>>> nontrivial_zeros_dist(1000)
1.2393168126993492
```
## `pstats1(data_rows=29)`
Return statistics of prime numbers up to `data_rows` which in default is equal `29`.
This value can be changed from a function argument, but it can't be greater
than that value. It can't be lower than 1 also. Rows statistics starts
from 10 up to 10^29, and they are for prime numbers in these ranges.<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> pstats1()
<Returns all table>
>>> pstats1(-2)
Incorrect argument
>>> pstats1(5)
x π(x) x/π(x) logx (x/π(x) - logx) / x/π(x) [%]
1e+01 4 2.5 2.302585092994046 7.896596280238163
1e+02 25 4.0 4.605170185988092 15.129254649702295
1e+03 168 5.9523809523809526 6.907755278982137 16.050288686899894
1e+04 1229 8.136696501220504 9.210340371976184 13.195083171587305
1e+05 9592 10.42535446205171 11.512925464970229 10.431981059994436
```
## `pstats2(data_rows=29)`
Return statistics of prime numbers up to `data_rows` which in default is equal `29`.
This value can be changed from a function argument, but it can't be greater
than that value. It can't be lower than 1 also. Rows statistics starts
from 10 up to 10^29, and they are for prime numbers in these ranges.<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> pstats2()
<Returns all table>
>>> pstats2(-2)
Incorrect argument
>>> pstats2(4)
x PNT: Li(x) π(x) PNT: x/logx
1e+01 6.165599504787298 4 4.3429448190325175
1e+02 30.12614158407963 25 21.71472409516259
1e+03 177.60965799015221 168 144.76482730108395
1e+04 1246.1372158993884 1229 1085.7362047581294
```
## `pstats3(data_rows=29)`
Return statistics of prime numbers up to `data_rows` which in default is equal `29`.
This value can be changed from a function argument, but it can't be greater
than that value. It can't be lower than 1 also. Rows statistics starts
from 10 up to 10^29, and they are for prime numbers in these ranges.<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> pstats3()
<Returns all table>
>>> pstats3(-2)
Incorrect argument
>>> pstats3(3)
x π(x) PNT: Li(x) Li(x) - π(x) (Li(x) - π(x)) / π(x) [%]
1e+01 4 6.165599504787298 2.165600 54.139988
1e+02 25 30.12614158407963 5.126142 20.504566
1e+03 168 177.60965799015221 9.609658 5.720035
```
## `fib()`
Return dictionary of Fibonacci numbers from `0` to `n`. Key is an index, and a value is a specific Fibonacci number. First must create `Fibonacci` class object and then call `fib()` method on it.
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> fob = Fibonacci(15)
>>> print(fob.fib())
{0: 0, 1: 1, 2: 1, 3: 2, 4: 3, 5: 5, 6: 8, 7: 13, 8: 21, 9: 34, 10: 55, 11: 89, 12: 144, 13: 233, 14: 377, 15: 610}
```
# Usage: `azntprimality` module functions
## `is_prime_naive1(n)`
Return if number is a prime.
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_prime_naive1(7)
True
```
## `is_prime_naive2(n)`
Return if number is a prime. This function is faster than `is_prime_naive1()` function.<br>
Time complexity: `O(n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_prime_naive2(5)
True
```
## `is_prime_sqrt(n)`
Return if number is a prime. This function is faster than `is_prime_naive2()` function.<br>
Time complexity: `O(sqrt(n)))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_prime_sqrt(101)
True
```
## `is_prime_sqrt_odd(n)`
Return if number is a prime. This function is faster than `is_prime_sqrt()` function.<br>
Time complexity: `O(sqrt(n)))`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> is_prime_sqrt(23)
True
```
## `eratosthenes_sieve(n)`
Return list of prime numbers from 2 up to `n` range.<br>
Time complexity: `O(n log n)`.<br>
**<span style="color: coral">Examples</span>**
```python
>>> eratosthenes_sieve(100)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
```
# Usage: `azntplots` module functions
## `critical_strip()`
Return a plot presenting critical strip and critical line of Riemann zeta.<br>
## `riemann_zeta()`
Return a plot presenting Riemann zeta function for critical line arguments.<br>
Raw data
{
"_id": null,
"home_page": "",
"name": "aznt",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "aznt,numbers,number theory,primes,prime numbers,math",
"author": "",
"author_email": "\"Adrian Zapa\u0142a, MSc\" <adrian.zapala@outlook.com>",
"download_url": "https://files.pythonhosted.org/packages/99/e3/51799e81afdda324b11be3fc41f93063043f8bb28b3f186c1d93645463ba/aznt-0.0.44.tar.gz",
"platform": null,
"description": "![Python Version](https://img.shields.io/badge/python-3.11-blue/)\r\n![aznt version](https://img.shields.io/badge/aznt-0.0.44-green)\r\n![Beta version](https://img.shields.io/badge/beta-ver.-green)\r\n\r\n# `aznt` - From A to Z Number Theory\r\n\r\n* Number Theory library for Python with prime numbers.\r\n* **Important:** requires Python >= 3.11.\r\n* You can pass to author's GitHub at\r\n[adrianzapala.github.io](https://adrianzapala.github.io/).\r\n\r\n# Install\r\n\r\n```python\r\npip install aznt\r\n```\r\n\r\n# Imports\r\n\r\nThe package `aznt` includes three modules: `azntnumbers`, `azntprimality` and `azntplots`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n\r\n```python\r\nimport aznt.azntnumbers as azn\r\nimport aznt.azntprimality as azpr\r\nimport aznt.azntplots as azpt\r\n```\r\n\r\n# General info about performance\r\nWhen working with numbers \r\nwith a large number of digits, calculation results slow down quickly. \r\nThis is especially true for algorithms such as factorization,\r\nsearching for dividers etc. So for many large numbers, \r\nit can take a very long time to get results.\r\n\r\n\r\n# Usage: `azntnumbers` module functions\r\n\r\n## `factorization(n)`\r\n\r\nReturn prime factors of a number from a function argument.<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> factorization(8)\r\n[2, 2, 2]\r\n>>> factorization(1123243)\r\n[11, 11, 9283]\r\n>>> factorization(20570952)\r\n[2, 2, 2, 3, 17, 127, 397]\r\n```\r\n\r\n## `dividers_naive(n)`\r\n\r\nReturns divisors of a number from a function argument. It returns \r\na list of these divisors.<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> dividers_naive(1123243)\r\n[1, 11, 121, 9283, 102113, 1123243]\r\n>>> dividers_naive(20570952)\r\n[1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 127, 136, 204, 254, 381, 397, 408, 508, 762, 794, 1016, 1191, 1524, 1588, 2159, 2382, 3048, 3176, 4318, 4764, 6477, 6749, 8636, 9528, 12954, 13498, 17272, 20247, 25908, 26996, 40494, 50419, 51816, 53992, 80988, 100838, 151257, 161976, 201676, 302514, 403352, 605028, 857123, 1210056, 1714246, 2571369, 3428492, 5142738, 6856984, 10285476, 20570952]\r\n```\r\n\r\n## `dividers_opt(n)`\r\n\r\nThis function calculates divisors in pairs, which multiplication product creates \r\na number from function argument. If the argument is default (`pairs=False`) \r\nand also if the numbers from these pairs are different it puts these pairs on the \r\nlist and then sort list (if the numbers are equal, it's placing only one number on the list). \r\nAlternatively, if the argument is `True` it join pairs of divisors (may be \r\nequal) into tuples and then append them into a list.<br>\r\nThis function works pretty much faster than `dividers_naive()` function.<br>\r\nTime complexity: `O(sqrt(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\ndividers_opt(100)\r\n[1, 2, 4, 5, 10, 20, 25, 50, 100]\r\ndividers_opt(100, pairs=True)\r\n[(1, 100), (2, 50), (4, 25), (5, 20), (10, 10)]\r\n```\r\n\r\n## `tau(n)`\r\n\r\nCount the number of divisors of an integer (including 1 and the number itself).<br>\r\nTime complexity: `O(sqrt(n))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> tau(6)\r\n4\r\n>>> tau(4356)\r\n27\r\n>>> tau(12499674)\r\n16\r\n```\r\n\r\n## `sigma(n)`\r\n\r\nReturn the sum of divisors of an integer \r\n(including 1 and the number itself).<br>\r\nTime complexity: `O(sqrt(n)))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> sigma(3)\r\n4\r\n>>> sigma(343532)\r\n687120\r\n```\r\n\r\n## `s(n)`\r\n\r\nReturn the sum of proper divisors of an integer \r\n(excluding `n` itself).<br>\r\nTime complexity: `O(sqrt(n)))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> s(3)\r\n1\r\n>>> s(4438)\r\n3194\r\n```\r\n\r\n## `gcd_mod(a, b)`\r\n\r\nReturn Greatest Common Divisor (GCD) of two positive integers using Euclidean algorithm \r\nwith division.<br>\r\nTime complexity: `O(log n))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> gcd_mod(36, 882)\r\n18\r\n>>> gcd_mod(363, 1287)\r\n33\r\n>>> gcd_mod(23, 3456)\r\n1\r\n>>> gcd_mod(484, 56)\r\n4\r\n```\r\n\r\n## `gcd_subtract(a, b)`\r\n\r\nReturn Greatest Common Divisor (GCD) of two positive integers using Euclidean algorithm \r\nwith subtraction.<br>\r\nTime complexity: `O(n))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> gcd_subtract(36, 882)\r\n18\r\n>>> gcd_subtract(363, 1287)\r\n33\r\n>>> gcd_subtract(23, 3456)\r\n1\r\n>>> gcd_subtract(484, 56)\r\n4\r\n```\r\n\r\n## `lcm(a, b)`\r\n\r\nReturn Lowest Common Multiple (LCM) of two positive integers.<br>\r\nTime complexity: `O(log n))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> lcm(36, 882)\r\n1764\r\n>>> lcm(363, 1287)\r\n14157\r\n>>> lcm(23, 3456)\r\n79488\r\n>>> lcm(484, 56)\r\n6776\r\n```\r\n\r\n## `is_gcd_eq_1(n, floor, ceil)`\r\n\r\nReturn a tuple. First\r\nelement of a tuple is a quantity of pairs of numbers which\r\nare relatively prime to themselves, the second element is a density of them and \r\nthe third element is a list of nested lists of them.\r\nAll pairs are randomly generated from `floor`\r\nto `ceil` of numbers range (`n`). Based on that a variety of different \r\noutputs can be possible for the same parameters.<br>\r\nTime complexity: `O(n log n))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_gcd_eq_1(25, 100, 10000)\r\n(15, 0.6, [[1470, 8779], [8447, 5117], [7852, 5597], [8111, 7225], [5375, 6721], [9191, 4239], [7101, 6361], [1099, 211], [7036, 9515], [5281, 7212], [948, 2471], [3451, 4541], [3896, 9463], [8006, 845], [4448, 4803]])\r\n>>> is_gcd_eq_1(25, 100, 10000)\r\n(13, 0.52, [[7271, 5402], [9505, 5791], [8608, 1811], [6017, 9782], [1784, 3439], [8135, 9444], [3979, 9078], [2849, 2677], [888, 8171], [6399, 6145], [6647, 3679], [3697, 7051], [557, 553]])\r\n```\r\n\r\n## `totient(n)`\r\n\r\nReturn Euler's totient function (phi) which counts the positive integers up to \r\na given integer `n` that are relatively prime to `n`.<br>\r\nTime complexity: `O(log n))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> totient(4)\r\n2\r\n>>> totient(24)\r\n8\r\n>>> totient(424235)\r\n253440\r\n```\r\n\r\n## `pnt(n)`\r\n\r\nReturn the asymptotic distribution of the prime numbers among \r\nthe positive integers.<br>\r\nTime complexity: `O(log n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> pnt(1000)\r\n144.76482730108395 // Real value: 168\r\n>>> pnt(1000000)\r\n72382.41365054197 // Real value: 78498\r\n```\r\n\r\n## `prime_probability(n)`\r\n\r\nReturn probability if a random number is prime to a specific ceil given.<br>\r\nTime complexity: `O(log n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> prime_probability(100)\r\n0.21714724095162588\r\n>>> prime_probability(1000)\r\n0.14476482730108395\r\n```\r\n\r\n## `basel_problem(max, n=2)`\r\n\r\nReturn precise summation of the reciprocals of the squares of the \r\nnatural numbers, i.e. the precise sum of the infinite series. \r\nThe sum of the series is approximately \r\nequal to 1.644934 (pi^2 / 6 for `n` = 2).<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> basel_problem(345567)\r\n1.6449311730576142\r\n>>> basel_problem(2568, n=4)\r\n1.0823232336914694\r\n```\r\n\r\n## `is_mersenne(m)`\r\n\r\nCheck if a number is Mersenne number, M = 2^n - 1 (prime or composite). Returns a four-element tuple. First element is boolean value - `True` or `False`.\r\nIf `True`, then second argument is M with exponent, third is the number in exponent (scientific) notation and the last is whole number.<br>\r\nTime complexity: `O(log n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_mersenne(0)\r\nArgument: 0. Mersenne numbers starts from 1.\r\n>>> is_mersenne(1)\r\n(True, 'M1', '1.00e+00', 1)\r\n>>> is_mersenne(2)\r\nFalse\r\n>>> is_mersenne(7)\r\n(True, 'M3', '7.00e+00', 7)\r\n>>> is_mersenne(100)\r\nFalse\r\n>>> is_mersenne(255)\r\n(True, 'M8', '2.55e+02', 255)\r\n>>> is_mersenne(511)\r\n(True, 'M9', '5.11e+02', 511)\r\n>>> is_mersenne(1023)\r\n(True, 'M10', '1.02e+03', 1023)\r\n>>> is_mersenne(604462909807314587353087)\r\n(True, 'M79', '6.04e+23', 604462909807314587353087)\r\n```\r\n\r\n## `is_fermat(f)`\r\n\r\nCheck if a number is Fermat number, F = 2^2^n - 1 (prime or composite). Returns a four-element tuple. First element is boolean value - `True` or `False`.\r\nIf `True`, then second argument is F with exponent, third is the number in exponent (scientific) notation and the last is whole number.<br>\r\nTime complexity: `O(log (log n))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_fermat(-3)\r\nArgument: -3. Fermat numbers starts from 3.\r\n>>> is_fermat(1)\r\nArgument: 1. Fermat numbers starts from 3.\r\n>>> is_fermat(3)\r\n(True, 'F0', '3.00e+00', 3)\r\n>>> is_fermat(5)\r\n(True, 'F1', '5.00e+00', 5)\r\n>>> is_fermat(7)\r\nFalse\r\n>>> is_fermat(17)\r\n(True, 'F2', '1.70e+01', 17)\r\n>>> is_fermat(257)\r\n(True, 'F3', '2.57e+02', 257)\r\n>>> is_fermat(65537)\r\n(True, 'F4', '6.55e+04', 65537)\r\n>>> is_fermat(4294967297)\r\n(True, 'F5', '4.29e+09', 4294967297)\r\n>>> is_fermat(18446744073709551617)\r\n(True, 'F6', '1.84e+19', 18446744073709551617)\r\n>>> is_fermat(340282366920938463463374607431768211457)\r\n(True, 'F7', '3.40e+38', 340282366920938463463374607431768211457)\r\n>>> is_fermat(115792089237316195423570985008687907853269984665640564039457584007913129639937)\r\n(True, 'F8', '1.16e+77', 115792089237316195423570985008687907853269984665640564039457584007913129639937)\r\n>>> is_fermat(13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097)\r\n(True, 'F9', '1.34e+154', 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097)\r\n```\r\n## `is_perfect(n)`\r\n\r\nCheck if a number is perfect number. If so, returns True, False otherwise.<br>\r\nTime complexity: `O(sqrt(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_perfect(7)\r\nFalse\r\n>>> is_perfect(8128)\r\nTrue\r\n```\r\n\r\n## `zeta_trivial_value(s, n=10000)`\r\n\r\nReturn **trivial** (real) value of Riemann zeta function for given argument, where `s` is zeta\r\nfunction argument, and `n` is number of terms in the series of zeta.<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> zeta_trivial_value(-49)\r\n-1.5001733492153957e+23\r\n>>> zeta_trivial_value(-31)\r\n472384867.72163075\r\n>>> zeta_trivial_value(-19)\r\n26.45621212121214\r\n>>> zeta_trivial_value(-15)\r\n0.44325980392156883\r\n>>> zeta_trivial_value(-5)\r\n-0.003968253968253967\r\n>>> zeta_trivial_value(-4)\r\n0\r\n>>> zeta_trivial_value(0)\r\n0.5\r\n>>> zeta_trivial_value(.1)\r\n-0.6029256240132325\r\n>>> zeta_trivial_value(.5)\r\n-1.4482837427744006\r\n>>> zeta_trivial_value(1)\r\ninf\r\n>>> zeta_trivial_value(5)\r\n1.0369277551433702\r\n>>> zeta_trivial_value(33)\r\n1.0000000001164155\r\n>>> zeta_trivial_value(50)\r\n1.0000000000000009\r\n```\r\n\r\n## `nontrivial_zeros_dist(t)`\r\n\r\nReturn average distance between zeros on a critical line in Riemann zeta function.<br>\r\nTime complexity: `O(log n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> nontrivial_zeros_dist(20)\r\n5.426572570049043\r\n>>> nontrivial_zeros_dist(100)\r\n2.2705167236263177\r\n>>> nontrivial_zeros_dist(1000)\r\n1.2393168126993492\r\n```\r\n\r\n## `pstats1(data_rows=29)`\r\n\r\nReturn statistics of prime numbers up to `data_rows` which in default is equal `29`. \r\nThis value can be changed from a function argument, but it can't be greater \r\nthan that value. It can't be lower than 1 also. Rows statistics starts \r\nfrom 10 up to 10^29, and they are for prime numbers in these ranges.<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> pstats1()\r\n<Returns all table>\r\n>>> pstats1(-2)\r\nIncorrect argument\r\n>>> pstats1(5)\r\n x \u03c0(x) x/\u03c0(x) logx (x/\u03c0(x) - logx) / x/\u03c0(x) [%] \r\n1e+01 4 2.5 2.302585092994046 7.896596280238163 \r\n1e+02 25 4.0 4.605170185988092 15.129254649702295 \r\n1e+03 168 5.9523809523809526 6.907755278982137 16.050288686899894 \r\n1e+04 1229 8.136696501220504 9.210340371976184 13.195083171587305 \r\n1e+05 9592 10.42535446205171 11.512925464970229 10.431981059994436 \r\n```\r\n\r\n## `pstats2(data_rows=29)`\r\n\r\nReturn statistics of prime numbers up to `data_rows` which in default is equal `29`. \r\nThis value can be changed from a function argument, but it can't be greater \r\nthan that value. It can't be lower than 1 also. Rows statistics starts \r\nfrom 10 up to 10^29, and they are for prime numbers in these ranges.<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> pstats2()\r\n<Returns all table>\r\n>>> pstats2(-2)\r\nIncorrect argument\r\n>>> pstats2(4)\r\n x PNT: Li(x) \u03c0(x) PNT: x/logx \r\n1e+01 6.165599504787298 4 4.3429448190325175 \r\n1e+02 30.12614158407963 25 21.71472409516259 \r\n1e+03 177.60965799015221 168 144.76482730108395 \r\n1e+04 1246.1372158993884 1229 1085.7362047581294\r\n```\r\n\r\n## `pstats3(data_rows=29)`\r\n\r\nReturn statistics of prime numbers up to `data_rows` which in default is equal `29`. \r\nThis value can be changed from a function argument, but it can't be greater \r\nthan that value. It can't be lower than 1 also. Rows statistics starts \r\nfrom 10 up to 10^29, and they are for prime numbers in these ranges.<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> pstats3()\r\n<Returns all table>\r\n>>> pstats3(-2)\r\nIncorrect argument\r\n>>> pstats3(3)\r\n x \u03c0(x) PNT: Li(x) Li(x) - \u03c0(x) (Li(x) - \u03c0(x)) / \u03c0(x) [%] \r\n1e+01 4 6.165599504787298 2.165600 54.139988 \r\n1e+02 25 30.12614158407963 5.126142 20.504566 \r\n1e+03 168 177.60965799015221 9.609658 5.720035\r\n```\r\n\r\n## `fib()`\r\nReturn dictionary of Fibonacci numbers from `0` to `n`. Key is an index, and a value is a specific Fibonacci number. First must create `Fibonacci` class object and then call `fib()` method on it.\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> fob = Fibonacci(15)\r\n>>> print(fob.fib())\r\n{0: 0, 1: 1, 2: 1, 3: 2, 4: 3, 5: 5, 6: 8, 7: 13, 8: 21, 9: 34, 10: 55, 11: 89, 12: 144, 13: 233, 14: 377, 15: 610}\r\n```\r\n\r\n# Usage: `azntprimality` module functions\r\n\r\n## `is_prime_naive1(n)`\r\nReturn if number is a prime.\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_prime_naive1(7)\r\nTrue\r\n```\r\n\r\n## `is_prime_naive2(n)`\r\nReturn if number is a prime. This function is faster than `is_prime_naive1()` function.<br>\r\nTime complexity: `O(n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_prime_naive2(5)\r\nTrue\r\n```\r\n\r\n## `is_prime_sqrt(n)`\r\nReturn if number is a prime. This function is faster than `is_prime_naive2()` function.<br>\r\nTime complexity: `O(sqrt(n)))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_prime_sqrt(101)\r\nTrue\r\n```\r\n\r\n## `is_prime_sqrt_odd(n)`\r\nReturn if number is a prime. This function is faster than `is_prime_sqrt()` function.<br>\r\nTime complexity: `O(sqrt(n)))`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> is_prime_sqrt(23)\r\nTrue\r\n```\r\n\r\n## `eratosthenes_sieve(n)`\r\nReturn list of prime numbers from 2 up to `n` range.<br>\r\nTime complexity: `O(n log n)`.<br>\r\n**<span style=\"color: coral\">Examples</span>**\r\n```python\r\n>>> eratosthenes_sieve(100)\r\n[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\r\n```\r\n\r\n# Usage: `azntplots` module functions\r\n\r\n## `critical_strip()`\r\n\r\nReturn a plot presenting critical strip and critical line of Riemann zeta.<br>\r\n\r\n## `riemann_zeta()`\r\n\r\nReturn a plot presenting Riemann zeta function for critical line arguments.<br>\r\n",
"bugtrack_url": null,
"license": "",
"summary": "From A to Z Number Theory",
"version": "0.0.44",
"project_urls": null,
"split_keywords": [
"aznt",
"numbers",
"number theory",
"primes",
"prime numbers",
"math"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e336ec9f8d2d11a73960b1da75614f7f863881fa72c291946bba0f8f5e3cdd23",
"md5": "dddc49ea73b1d87bec3fa5f85fcb069c",
"sha256": "c28ae061a500fad499ca282662ce60cd43b1dbf3d711ab671f1f7e5ca9e3a269"
},
"downloads": -1,
"filename": "aznt-0.0.44-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dddc49ea73b1d87bec3fa5f85fcb069c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 12087,
"upload_time": "2023-06-16T08:39:47",
"upload_time_iso_8601": "2023-06-16T08:39:47.417896Z",
"url": "https://files.pythonhosted.org/packages/e3/36/ec9f8d2d11a73960b1da75614f7f863881fa72c291946bba0f8f5e3cdd23/aznt-0.0.44-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "99e351799e81afdda324b11be3fc41f93063043f8bb28b3f186c1d93645463ba",
"md5": "1f76e94613049e4d18fb270279827ff4",
"sha256": "add310366914d9efba1a1e3ed94ebab53d926834281cc8d161e495a1d4d74b75"
},
"downloads": -1,
"filename": "aznt-0.0.44.tar.gz",
"has_sig": false,
"md5_digest": "1f76e94613049e4d18fb270279827ff4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 15586,
"upload_time": "2023-06-16T08:39:49",
"upload_time_iso_8601": "2023-06-16T08:39:49.119843Z",
"url": "https://files.pythonhosted.org/packages/99/e3/51799e81afdda324b11be3fc41f93063043f8bb28b3f186c1d93645463ba/aznt-0.0.44.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-16 08:39:49",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "aznt"
}