azureml-ngc-tools


Nameazureml-ngc-tools JSON
Version 1.5.1 PyPI version JSON
download
home_page
SummaryAzureML integration with NGC
upload_time2022-12-07 17:04:01
maintainer
docs_urlNone
author
requires_python>=3.5
licenseBSD
keywords azureml ngc gpu
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AzureML NVIDIA GPU Cloud tools

The code contained within this repository allows pulling the images from NVIDIA GPU Cloud (NGC).

## Installation

To install this package type 

`pip install azureml-ngc-tools`

Alternatively, clone this repository and use python to install.

```
git clone https://github.com/.../azureml-ngc-tools.git
python setup.py install
```

## Configuration

Two configuration files are required:

1. A `json` file that contains the parameters to log in to AzureML Workspace and create Compute Target. **All the parameters shown below need to be provided.**

```
{
    "azureml_user":
    {
        "subscription_id": "<YOUR-SUBSCRIPTION-ID>",
        "resource_group": "<YOUR-RESOURCE-GROUP>",
        "workspace_name": "<YOUR-WORKSPACE-NAME>",
        "telemetry_opt_out": <true|false>
    },
    "aml_compute":
    {
        "ct_name":"<NAME-OF-YOUR-COMPUTE-TARGET>",
        "exp_name":"<NAME-OF-YOUR-EXPERIMENT>",
        "vm_name":"<SIZE-OF-THE-AZUREML-VM>",
        "admin_name":"<ADMINISTRATOR-NAME>",
        "min_nodes":<MINIMUM-NUMBER-OF-NODES>,
        "max_nodes":<MAXIMUM-NUMBER-OF-NODES>,
        "vm_priority": "<dedicated|lowpriority>",
        "idle_seconds_before_scaledown":<NUMBER-OF-SECONDS-TO-SCALE-DOWN>,
        "python_interpreter":"<PATH-TO-PYTHON-INTERPRETER>",
        "conda_packages":[<LIST-OF-ADDITIONAL-CONDA-OR-PIP-PACKAGES>],
        "environment_name":"<NAME-OF-ENVIRONMENT>",
        "docker_enabled":<true|false>,
        "user_managed_dependencies":<true|false>,
        "jupyter_port":<JUPYTER-PORT-FOR-FORWARDING>
    }
}

```

An example (fictitious):

```
{
    "azureml_user":
    {
        "subscription_id": "ef4455fa-3e35-433c-a410-76d7a8a9e793",
        "resource_group": "sample-rg",
        "workspace_name": "sample-ws",
        "telemetry_opt_out": false
    },
    "aml_compute":
    {
        "ct_name":"sample-ct",
        "exp_name":"sample-exp",
        "vm_name":"Standard_NC6s_v3",
        "admin_name": "sample",
        "min_nodes":0,
        "max_nodes":1,
        "vm_priority": "dedicated",
        "idle_seconds_before_scaledown":300,
        "python_interpreter":"/usr/bin/python",
        "conda_packages":["matplotlib","jupyterlab"],
        "environment_name":"sample_env",
        "docker_enabled":true,
        "user_managed_dependencies":true,
        "jupyter_port":9000
    }
}

```

2. A `json` file that contains information about the content you want to download from NGC. **The `base_dockerfile` parameter shown below needs to be provided.**

```
{
    "base_dockerfile":"<URI-TO-NGC-CONTAINER>",
    "additional_content": {
        "download_content": false,
        "unzip_content": false,
        "upload_content": false,
        "list":[
            {
                "url": <URL_TO_CONTENT>,
                "filename": <FILENAME_TO_SAVE_TO>,
                "localdirectory": <DIRECTORY_TO_EXTRACT_CONTENTS>,
                "computedirectory": <DIRECTORY_TO_UPLOAD_CONTENTS>,
                "zipped": <false|true>
            },
            ...
        ]
    }
}
```

An example:

```
{
    "base_dockerfile":"nvcr.io/nvidia/clara-train-sdk:v3.0",
    "additional_content": {
        "download_content": true,
        "unzip_content": true,
        "upload_content": true,
        "list":[
            {
                "url":"https://api.ngc.nvidia.com/v2/resources/nvidia/med/getting_started/versions/1/zip",
                "filename":"clarasdk.zip",
                "localdirectory":"clara",
                "computedirectory":"clara",
                "zipped":true
            }
        ]
    }
}
```

## Usage
Assuming that the AzureML config file is `user_config.json` and the NGC config file is `ngc_app.json`, and both of the files are located in the same folder, to create the cluster run the following code

`azureml-ngc-tools --login user_config.json --app ngc_app.json`

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "azureml-ngc-tools",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": "",
    "keywords": "azureml,ngc,gpu",
    "author": "",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/be/ef/d239318060014ca7c1b9317e034eb9e55af31d8cc69933bb049aa0e3b699/azureml_ngc_tools-1.5.1.tar.gz",
    "platform": null,
    "description": "# AzureML NVIDIA GPU Cloud tools\n\nThe code contained within this repository allows pulling the images from NVIDIA GPU Cloud (NGC).\n\n## Installation\n\nTo install this package type \n\n`pip install azureml-ngc-tools`\n\nAlternatively, clone this repository and use python to install.\n\n```\ngit clone https://github.com/.../azureml-ngc-tools.git\npython setup.py install\n```\n\n## Configuration\n\nTwo configuration files are required:\n\n1. A `json` file that contains the parameters to log in to AzureML Workspace and create Compute Target. **All the parameters shown below need to be provided.**\n\n```\n{\n    \"azureml_user\":\n    {\n        \"subscription_id\": \"<YOUR-SUBSCRIPTION-ID>\",\n        \"resource_group\": \"<YOUR-RESOURCE-GROUP>\",\n        \"workspace_name\": \"<YOUR-WORKSPACE-NAME>\",\n        \"telemetry_opt_out\": <true|false>\n    },\n    \"aml_compute\":\n    {\n        \"ct_name\":\"<NAME-OF-YOUR-COMPUTE-TARGET>\",\n        \"exp_name\":\"<NAME-OF-YOUR-EXPERIMENT>\",\n        \"vm_name\":\"<SIZE-OF-THE-AZUREML-VM>\",\n        \"admin_name\":\"<ADMINISTRATOR-NAME>\",\n        \"min_nodes\":<MINIMUM-NUMBER-OF-NODES>,\n        \"max_nodes\":<MAXIMUM-NUMBER-OF-NODES>,\n        \"vm_priority\": \"<dedicated|lowpriority>\",\n        \"idle_seconds_before_scaledown\":<NUMBER-OF-SECONDS-TO-SCALE-DOWN>,\n        \"python_interpreter\":\"<PATH-TO-PYTHON-INTERPRETER>\",\n        \"conda_packages\":[<LIST-OF-ADDITIONAL-CONDA-OR-PIP-PACKAGES>],\n        \"environment_name\":\"<NAME-OF-ENVIRONMENT>\",\n        \"docker_enabled\":<true|false>,\n        \"user_managed_dependencies\":<true|false>,\n        \"jupyter_port\":<JUPYTER-PORT-FOR-FORWARDING>\n    }\n}\n\n```\n\nAn example (fictitious):\n\n```\n{\n    \"azureml_user\":\n    {\n        \"subscription_id\": \"ef4455fa-3e35-433c-a410-76d7a8a9e793\",\n        \"resource_group\": \"sample-rg\",\n        \"workspace_name\": \"sample-ws\",\n        \"telemetry_opt_out\": false\n    },\n    \"aml_compute\":\n    {\n        \"ct_name\":\"sample-ct\",\n        \"exp_name\":\"sample-exp\",\n        \"vm_name\":\"Standard_NC6s_v3\",\n        \"admin_name\": \"sample\",\n        \"min_nodes\":0,\n        \"max_nodes\":1,\n        \"vm_priority\": \"dedicated\",\n        \"idle_seconds_before_scaledown\":300,\n        \"python_interpreter\":\"/usr/bin/python\",\n        \"conda_packages\":[\"matplotlib\",\"jupyterlab\"],\n        \"environment_name\":\"sample_env\",\n        \"docker_enabled\":true,\n        \"user_managed_dependencies\":true,\n        \"jupyter_port\":9000\n    }\n}\n\n```\n\n2. A `json` file that contains information about the content you want to download from NGC. **The `base_dockerfile` parameter shown below needs to be provided.**\n\n```\n{\n    \"base_dockerfile\":\"<URI-TO-NGC-CONTAINER>\",\n    \"additional_content\": {\n        \"download_content\": false,\n        \"unzip_content\": false,\n        \"upload_content\": false,\n        \"list\":[\n            {\n                \"url\": <URL_TO_CONTENT>,\n                \"filename\": <FILENAME_TO_SAVE_TO>,\n                \"localdirectory\": <DIRECTORY_TO_EXTRACT_CONTENTS>,\n                \"computedirectory\": <DIRECTORY_TO_UPLOAD_CONTENTS>,\n                \"zipped\": <false|true>\n            },\n            ...\n        ]\n    }\n}\n```\n\nAn example:\n\n```\n{\n    \"base_dockerfile\":\"nvcr.io/nvidia/clara-train-sdk:v3.0\",\n    \"additional_content\": {\n        \"download_content\": true,\n        \"unzip_content\": true,\n        \"upload_content\": true,\n        \"list\":[\n            {\n                \"url\":\"https://api.ngc.nvidia.com/v2/resources/nvidia/med/getting_started/versions/1/zip\",\n                \"filename\":\"clarasdk.zip\",\n                \"localdirectory\":\"clara\",\n                \"computedirectory\":\"clara\",\n                \"zipped\":true\n            }\n        ]\n    }\n}\n```\n\n## Usage\nAssuming that the AzureML config file is `user_config.json` and the NGC config file is `ngc_app.json`, and both of the files are located in the same folder, to create the cluster run the following code\n\n`azureml-ngc-tools --login user_config.json --app ngc_app.json`\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "AzureML integration with NGC",
    "version": "1.5.1",
    "split_keywords": [
        "azureml",
        "ngc",
        "gpu"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "c0756a2113d2559dc82643009d3cca1d",
                "sha256": "cd97924a9781a7b724a31e881ba912f35b1fe41b51d162a1a1693e7fc98d2b18"
            },
            "downloads": -1,
            "filename": "azureml_ngc_tools-1.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c0756a2113d2559dc82643009d3cca1d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.5",
            "size": 21747,
            "upload_time": "2022-12-07T17:03:59",
            "upload_time_iso_8601": "2022-12-07T17:03:59.245659Z",
            "url": "https://files.pythonhosted.org/packages/27/8e/00afcc9d4ea2fe7411c9fab7955e67b26811480a838ccd783bdc069c3cf4/azureml_ngc_tools-1.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "e6b5ab115eaa356fabe863e4dce7e28b",
                "sha256": "a7a3dd39e2b225ca623c1d5a9fdb98a5ebe47bafe647fb31256e6069fa11c55f"
            },
            "downloads": -1,
            "filename": "azureml_ngc_tools-1.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e6b5ab115eaa356fabe863e4dce7e28b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 40191,
            "upload_time": "2022-12-07T17:04:01",
            "upload_time_iso_8601": "2022-12-07T17:04:01.025035Z",
            "url": "https://files.pythonhosted.org/packages/be/ef/d239318060014ca7c1b9317e034eb9e55af31d8cc69933bb049aa0e3b699/azureml_ngc_tools-1.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-07 17:04:01",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "azureml-ngc-tools"
}
        
Elapsed time: 0.16640s