bartbroere-eland


Namebartbroere-eland JSON
Version 8.17.0 PyPI version JSON
download
home_pagehttps://github.com/elastic/eland
Summary[Development fork!] Python Client and Toolkit for DataFrames, Big Data, Machine Learning and ETL in Elasticsearch
upload_time2025-01-10 13:39:54
maintainerElastic Client Library Maintainers
docs_urlNone
authorSteve Dodson
requires_python<3.13,>=3.8
licenseApache-2.0
keywords elastic eland pandas python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <a href="https://github.com/elastic/eland">
    <img src="https://raw.githubusercontent.com/elastic/eland/main/docs/sphinx/logo/eland.png" width="30%"
      alt="Eland" />
  </a>
</div>
<br />
<div align="center">
  <a href="https://pypi.org/project/eland"><img src="https://img.shields.io/pypi/v/eland.svg" alt="PyPI Version"></a>
  <a href="https://anaconda.org/conda-forge/eland"><img src="https://img.shields.io/conda/vn/conda-forge/eland"
      alt="Conda Version"></a>
  <a href="https://pepy.tech/project/eland"><img src="https://static.pepy.tech/badge/eland" alt="Downloads"></a>
  <a href="https://pypi.org/project/eland"><img src="https://img.shields.io/pypi/status/eland.svg"
      alt="Package Status"></a>
  <a href="https://buildkite.com/elastic/eland"><img src="https://badge.buildkite.com/d92340e800bc06a7c7c02a71b8d42fcb958bd18c25f99fe2d9.svg" alt="Build Status"></a>
  <a href="https://github.com/elastic/eland/blob/main/LICENSE.txt"><img src="https://img.shields.io/pypi/l/eland.svg"
      alt="License"></a>
  <a href="https://eland.readthedocs.io"><img
      src="https://readthedocs.org/projects/eland/badge/?version=latest" alt="Documentation Status"></a>
</div>

## About

Eland is a Python Elasticsearch client for exploring and  analyzing data in Elasticsearch with a familiar
Pandas-compatible API.

Where possible the package uses existing Python APIs and data structures to make it easy to switch between numpy,
pandas, or scikit-learn to their Elasticsearch powered equivalents. In general, the data resides in Elasticsearch and
not in memory, which allows Eland to access large datasets stored in Elasticsearch.

Eland also provides tools to upload trained machine learning models from common libraries like
[scikit-learn](https://scikit-learn.org), [XGBoost](https://xgboost.readthedocs.io),  and
[LightGBM](https://lightgbm.readthedocs.io) into Elasticsearch.

## Getting Started

Eland can be installed from [PyPI](https://pypi.org/project/eland) with Pip:

```bash
$ python -m pip install eland
```

If using Eland to upload NLP models to Elasticsearch install the PyTorch extras:
```bash
$ python -m pip install 'eland[pytorch]'
```

Eland can also be installed from [Conda Forge](https://anaconda.org/conda-forge/eland) with Conda:

```bash
$ conda install -c conda-forge eland
```

### Compatibility

- Supports Python 3.8, 3.9, 3.10, 3.11 and Pandas 1.5
- Supports Elasticsearch clusters that are 7.11+, recommended 8.13 or later for all features to work.
  If you are using the NLP with PyTorch feature make sure your Eland minor version matches the minor 
  version of your Elasticsearch cluster. For all other features it is sufficient for the major versions
  to match.
- You need to install the appropriate version of PyTorch to import an NLP model. Run `python -m pip
  install 'eland[pytorch]'` to install that version.
  

### Prerequisites

Users installing Eland on Debian-based distributions may need to install prerequisite packages for the transitive
dependencies of Eland:

```bash
$ sudo apt-get install -y \
  build-essential pkg-config cmake \
  python3-dev libzip-dev libjpeg-dev
```

Note that other distributions such as CentOS, RedHat, Arch, etc. may require using a different package manager and
specifying different package names. 

### Docker

If you want to use Eland without installing it just to run the available scripts, use the Docker
image.
It can be used interactively:

```bash
$ docker run -it --rm --network host docker.elastic.co/eland/eland
```

Running installed scripts is also possible without an interactive shell, e.g.:

```bash
$ docker run -it --rm --network host \
    docker.elastic.co/eland/eland \
    eland_import_hub_model \
      --url http://host.docker.internal:9200/ \
      --hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \
      --task-type ner
```

### Connecting to Elasticsearch 

Eland uses the [Elasticsearch low level client](https://elasticsearch-py.readthedocs.io) to connect to Elasticsearch. 
This client supports a range of [connection options and authentication options](https://elasticsearch-py.readthedocs.io/en/stable/api.html#elasticsearch). 

You can pass either an instance of `elasticsearch.Elasticsearch` to Eland APIs
or a string containing the host to connect to:

```python
import eland as ed

# Connecting to an Elasticsearch instance running on 'http://localhost:9200'
df = ed.DataFrame("http://localhost:9200", es_index_pattern="flights")

# Connecting to an Elastic Cloud instance
from elasticsearch import Elasticsearch

es = Elasticsearch(
    cloud_id="cluster-name:...",
    basic_auth=("elastic", "<password>")
)
df = ed.DataFrame(es, es_index_pattern="flights")
```

## DataFrames in Eland

`eland.DataFrame` wraps an Elasticsearch index in a Pandas-like API
and defers all processing and filtering of data to Elasticsearch
instead of your local machine. This means you can process large
amounts of data within Elasticsearch from a Jupyter Notebook
without overloading your machine.

➤ [Eland DataFrame API documentation](https://eland.readthedocs.io/en/latest/reference/dataframe.html)

➤ [Advanced examples in a Jupyter Notebook](https://eland.readthedocs.io/en/latest/examples/demo_notebook.html)

```python
>>> import eland as ed

>>> # Connect to 'flights' index via localhost Elasticsearch node
>>> df = ed.DataFrame('http://localhost:9200', 'flights')

# eland.DataFrame instance has the same API as pandas.DataFrame
# except all data is in Elasticsearch. See .info() memory usage.
>>> df.head()
   AvgTicketPrice  Cancelled  ... dayOfWeek           timestamp
0      841.265642      False  ...         0 2018-01-01 00:00:00
1      882.982662      False  ...         0 2018-01-01 18:27:00
2      190.636904      False  ...         0 2018-01-01 17:11:14
3      181.694216       True  ...         0 2018-01-01 10:33:28
4      730.041778      False  ...         0 2018-01-01 05:13:00

[5 rows x 27 columns]

>>> df.info()
<class 'eland.dataframe.DataFrame'>
Index: 13059 entries, 0 to 13058
Data columns (total 27 columns):
 #   Column              Non-Null Count  Dtype         
---  ------              --------------  -----         
 0   AvgTicketPrice      13059 non-null  float64       
 1   Cancelled           13059 non-null  bool          
 2   Carrier             13059 non-null  object        
...      
 24  OriginWeather       13059 non-null  object        
 25  dayOfWeek           13059 non-null  int64         
 26  timestamp           13059 non-null  datetime64[ns]
dtypes: bool(2), datetime64[ns](1), float64(5), int64(2), object(17)
memory usage: 80.0 bytes
Elasticsearch storage usage: 5.043 MB

# Filtering of rows using comparisons
>>> df[(df.Carrier=="Kibana Airlines") & (df.AvgTicketPrice > 900.0) & (df.Cancelled == True)].head()
     AvgTicketPrice  Cancelled  ... dayOfWeek           timestamp
8        960.869736       True  ...         0 2018-01-01 12:09:35
26       975.812632       True  ...         0 2018-01-01 15:38:32
311      946.358410       True  ...         0 2018-01-01 11:51:12
651      975.383864       True  ...         2 2018-01-03 21:13:17
950      907.836523       True  ...         2 2018-01-03 05:14:51

[5 rows x 27 columns]

# Running aggregations across an index
>>> df[['DistanceKilometers', 'AvgTicketPrice']].aggregate(['sum', 'min', 'std'])
     DistanceKilometers  AvgTicketPrice
sum        9.261629e+07    8.204365e+06
min        0.000000e+00    1.000205e+02
std        4.578263e+03    2.663867e+02
```

## Machine Learning in Eland

### Regression and classification

Eland allows transforming trained regression and classification models from scikit-learn, XGBoost, and LightGBM
libraries to be serialized and used as an inference model in Elasticsearch.

➤ [Eland Machine Learning API documentation](https://eland.readthedocs.io/en/latest/reference/ml.html)

➤ [Read more about Machine Learning in Elasticsearch](https://www.elastic.co/guide/en/machine-learning/current/ml-getting-started.html)

```python
>>> from sklearn import datasets
>>> from xgboost import XGBClassifier
>>> from eland.ml import MLModel

# Train and exercise an XGBoost ML model locally
>>> training_data = datasets.make_classification(n_features=5)
>>> xgb_model = XGBClassifier(booster="gbtree")
>>> xgb_model.fit(training_data[0], training_data[1])

>>> xgb_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]

# Import the model into Elasticsearch
>>> es_model = MLModel.import_model(
    es_client="http://localhost:9200",
    model_id="xgb-classifier",
    model=xgb_model,
    feature_names=["f0", "f1", "f2", "f3", "f4"],
)

# Exercise the ML model in Elasticsearch with the training data
>>> es_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
```

### NLP with PyTorch

For NLP tasks, Eland allows importing PyTorch trained BERT models into Elasticsearch. Models can be either plain PyTorch
models, or supported [transformers](https://huggingface.co/transformers) models from the
[Hugging Face model hub](https://huggingface.co/models).

```bash
$ eland_import_hub_model \
  --url http://localhost:9200/ \
  --hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \
  --task-type ner \
  --start
```

The example above will automatically start a model deployment. This is a
good shortcut for initial experimentation, but for anything that needs
good throughput you should omit the `--start` argument from the Eland
command line and instead start the model using the ML UI in Kibana.
The `--start` argument will deploy the model with one allocation and one
thread per allocation, which will not offer good performance. When starting
the model deployment using the ML UI in Kibana or the Elasticsearch
[API](https://www.elastic.co/guide/en/elasticsearch/reference/current/start-trained-model-deployment.html)
you will be able to set the threading options to make the best use of your
hardware.

```python
>>> import elasticsearch
>>> from pathlib import Path
>>> from eland.common import es_version
>>> from eland.ml.pytorch import PyTorchModel
>>> from eland.ml.pytorch.transformers import TransformerModel

>>> es = elasticsearch.Elasticsearch("http://elastic:mlqa_admin@localhost:9200")
>>> es_cluster_version = es_version(es)

# Load a Hugging Face transformers model directly from the model hub
>>> tm = TransformerModel(model_id="elastic/distilbert-base-cased-finetuned-conll03-english", task_type="ner", es_version=es_cluster_version)
Downloading: 100%|██████████| 257/257 [00:00<00:00, 108kB/s]
Downloading: 100%|██████████| 954/954 [00:00<00:00, 372kB/s]
Downloading: 100%|██████████| 208k/208k [00:00<00:00, 668kB/s] 
Downloading: 100%|██████████| 112/112 [00:00<00:00, 43.9kB/s]
Downloading: 100%|██████████| 249M/249M [00:23<00:00, 11.2MB/s]

# Export the model in a TorchScrpt representation which Elasticsearch uses
>>> tmp_path = "models"
>>> Path(tmp_path).mkdir(parents=True, exist_ok=True)
>>> model_path, config, vocab_path = tm.save(tmp_path)

# Import model into Elasticsearch
>>> ptm = PyTorchModel(es, tm.elasticsearch_model_id())
>>> ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)
100%|██████████| 63/63 [00:12<00:00,  5.02it/s]
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/elastic/eland",
    "name": "bartbroere-eland",
    "maintainer": "Elastic Client Library Maintainers",
    "docs_url": null,
    "requires_python": "<3.13,>=3.8",
    "maintainer_email": "client-libs@elastic.co",
    "keywords": "elastic eland pandas python",
    "author": "Steve Dodson",
    "author_email": "steve.dodson@elastic.co",
    "download_url": null,
    "platform": null,
    "description": "<div align=\"center\">\n  <a href=\"https://github.com/elastic/eland\">\n    <img src=\"https://raw.githubusercontent.com/elastic/eland/main/docs/sphinx/logo/eland.png\" width=\"30%\"\n      alt=\"Eland\" />\n  </a>\n</div>\n<br />\n<div align=\"center\">\n  <a href=\"https://pypi.org/project/eland\"><img src=\"https://img.shields.io/pypi/v/eland.svg\" alt=\"PyPI Version\"></a>\n  <a href=\"https://anaconda.org/conda-forge/eland\"><img src=\"https://img.shields.io/conda/vn/conda-forge/eland\"\n      alt=\"Conda Version\"></a>\n  <a href=\"https://pepy.tech/project/eland\"><img src=\"https://static.pepy.tech/badge/eland\" alt=\"Downloads\"></a>\n  <a href=\"https://pypi.org/project/eland\"><img src=\"https://img.shields.io/pypi/status/eland.svg\"\n      alt=\"Package Status\"></a>\n  <a href=\"https://buildkite.com/elastic/eland\"><img src=\"https://badge.buildkite.com/d92340e800bc06a7c7c02a71b8d42fcb958bd18c25f99fe2d9.svg\" alt=\"Build Status\"></a>\n  <a href=\"https://github.com/elastic/eland/blob/main/LICENSE.txt\"><img src=\"https://img.shields.io/pypi/l/eland.svg\"\n      alt=\"License\"></a>\n  <a href=\"https://eland.readthedocs.io\"><img\n      src=\"https://readthedocs.org/projects/eland/badge/?version=latest\" alt=\"Documentation Status\"></a>\n</div>\n\n## About\n\nEland is a Python Elasticsearch client for exploring and  analyzing data in Elasticsearch with a familiar\nPandas-compatible API.\n\nWhere possible the package uses existing Python APIs and data structures to make it easy to switch between numpy,\npandas, or scikit-learn to their Elasticsearch powered equivalents. In general, the data resides in Elasticsearch and\nnot in memory, which allows Eland to access large datasets stored in Elasticsearch.\n\nEland also provides tools to upload trained machine learning models from common libraries like\n[scikit-learn](https://scikit-learn.org), [XGBoost](https://xgboost.readthedocs.io),  and\n[LightGBM](https://lightgbm.readthedocs.io) into Elasticsearch.\n\n## Getting Started\n\nEland can be installed from [PyPI](https://pypi.org/project/eland) with Pip:\n\n```bash\n$ python -m pip install eland\n```\n\nIf using Eland to upload NLP models to Elasticsearch install the PyTorch extras:\n```bash\n$ python -m pip install 'eland[pytorch]'\n```\n\nEland can also be installed from [Conda Forge](https://anaconda.org/conda-forge/eland) with Conda:\n\n```bash\n$ conda install -c conda-forge eland\n```\n\n### Compatibility\n\n- Supports Python 3.8, 3.9, 3.10, 3.11 and Pandas 1.5\n- Supports Elasticsearch clusters that are 7.11+, recommended 8.13 or later for all features to work.\n  If you are using the NLP with PyTorch feature make sure your Eland minor version matches the minor \n  version of your Elasticsearch cluster. For all other features it is sufficient for the major versions\n  to match.\n- You need to install the appropriate version of PyTorch to import an NLP model. Run `python -m pip\n  install 'eland[pytorch]'` to install that version.\n  \n\n### Prerequisites\n\nUsers installing Eland on Debian-based distributions may need to install prerequisite packages for the transitive\ndependencies of Eland:\n\n```bash\n$ sudo apt-get install -y \\\n  build-essential pkg-config cmake \\\n  python3-dev libzip-dev libjpeg-dev\n```\n\nNote that other distributions such as CentOS, RedHat, Arch, etc. may require using a different package manager and\nspecifying different package names. \n\n### Docker\n\nIf you want to use Eland without installing it just to run the available scripts, use the Docker\nimage.\nIt can be used interactively:\n\n```bash\n$ docker run -it --rm --network host docker.elastic.co/eland/eland\n```\n\nRunning installed scripts is also possible without an interactive shell, e.g.:\n\n```bash\n$ docker run -it --rm --network host \\\n    docker.elastic.co/eland/eland \\\n    eland_import_hub_model \\\n      --url http://host.docker.internal:9200/ \\\n      --hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \\\n      --task-type ner\n```\n\n### Connecting to Elasticsearch \n\nEland uses the [Elasticsearch low level client](https://elasticsearch-py.readthedocs.io) to connect to Elasticsearch. \nThis client supports a range of [connection options and authentication options](https://elasticsearch-py.readthedocs.io/en/stable/api.html#elasticsearch). \n\nYou can pass either an instance of `elasticsearch.Elasticsearch` to Eland APIs\nor a string containing the host to connect to:\n\n```python\nimport eland as ed\n\n# Connecting to an Elasticsearch instance running on 'http://localhost:9200'\ndf = ed.DataFrame(\"http://localhost:9200\", es_index_pattern=\"flights\")\n\n# Connecting to an Elastic Cloud instance\nfrom elasticsearch import Elasticsearch\n\nes = Elasticsearch(\n    cloud_id=\"cluster-name:...\",\n    basic_auth=(\"elastic\", \"<password>\")\n)\ndf = ed.DataFrame(es, es_index_pattern=\"flights\")\n```\n\n## DataFrames in Eland\n\n`eland.DataFrame` wraps an Elasticsearch index in a Pandas-like API\nand defers all processing and filtering of data to Elasticsearch\ninstead of your local machine. This means you can process large\namounts of data within Elasticsearch from a Jupyter Notebook\nwithout overloading your machine.\n\n\u27a4 [Eland DataFrame API documentation](https://eland.readthedocs.io/en/latest/reference/dataframe.html)\n\n\u27a4 [Advanced examples in a Jupyter Notebook](https://eland.readthedocs.io/en/latest/examples/demo_notebook.html)\n\n```python\n>>> import eland as ed\n\n>>> # Connect to 'flights' index via localhost Elasticsearch node\n>>> df = ed.DataFrame('http://localhost:9200', 'flights')\n\n# eland.DataFrame instance has the same API as pandas.DataFrame\n# except all data is in Elasticsearch. See .info() memory usage.\n>>> df.head()\n   AvgTicketPrice  Cancelled  ... dayOfWeek           timestamp\n0      841.265642      False  ...         0 2018-01-01 00:00:00\n1      882.982662      False  ...         0 2018-01-01 18:27:00\n2      190.636904      False  ...         0 2018-01-01 17:11:14\n3      181.694216       True  ...         0 2018-01-01 10:33:28\n4      730.041778      False  ...         0 2018-01-01 05:13:00\n\n[5 rows x 27 columns]\n\n>>> df.info()\n<class 'eland.dataframe.DataFrame'>\nIndex: 13059 entries, 0 to 13058\nData columns (total 27 columns):\n #   Column              Non-Null Count  Dtype         \n---  ------              --------------  -----         \n 0   AvgTicketPrice      13059 non-null  float64       \n 1   Cancelled           13059 non-null  bool          \n 2   Carrier             13059 non-null  object        \n...      \n 24  OriginWeather       13059 non-null  object        \n 25  dayOfWeek           13059 non-null  int64         \n 26  timestamp           13059 non-null  datetime64[ns]\ndtypes: bool(2), datetime64[ns](1), float64(5), int64(2), object(17)\nmemory usage: 80.0 bytes\nElasticsearch storage usage: 5.043 MB\n\n# Filtering of rows using comparisons\n>>> df[(df.Carrier==\"Kibana Airlines\") & (df.AvgTicketPrice > 900.0) & (df.Cancelled == True)].head()\n     AvgTicketPrice  Cancelled  ... dayOfWeek           timestamp\n8        960.869736       True  ...         0 2018-01-01 12:09:35\n26       975.812632       True  ...         0 2018-01-01 15:38:32\n311      946.358410       True  ...         0 2018-01-01 11:51:12\n651      975.383864       True  ...         2 2018-01-03 21:13:17\n950      907.836523       True  ...         2 2018-01-03 05:14:51\n\n[5 rows x 27 columns]\n\n# Running aggregations across an index\n>>> df[['DistanceKilometers', 'AvgTicketPrice']].aggregate(['sum', 'min', 'std'])\n     DistanceKilometers  AvgTicketPrice\nsum        9.261629e+07    8.204365e+06\nmin        0.000000e+00    1.000205e+02\nstd        4.578263e+03    2.663867e+02\n```\n\n## Machine Learning in Eland\n\n### Regression and classification\n\nEland allows transforming trained regression and classification models from scikit-learn, XGBoost, and LightGBM\nlibraries to be serialized and used as an inference model in Elasticsearch.\n\n\u27a4 [Eland Machine Learning API documentation](https://eland.readthedocs.io/en/latest/reference/ml.html)\n\n\u27a4 [Read more about Machine Learning in Elasticsearch](https://www.elastic.co/guide/en/machine-learning/current/ml-getting-started.html)\n\n```python\n>>> from sklearn import datasets\n>>> from xgboost import XGBClassifier\n>>> from eland.ml import MLModel\n\n# Train and exercise an XGBoost ML model locally\n>>> training_data = datasets.make_classification(n_features=5)\n>>> xgb_model = XGBClassifier(booster=\"gbtree\")\n>>> xgb_model.fit(training_data[0], training_data[1])\n\n>>> xgb_model.predict(training_data[0])\n[0 1 1 0 1 0 0 0 1 0]\n\n# Import the model into Elasticsearch\n>>> es_model = MLModel.import_model(\n    es_client=\"http://localhost:9200\",\n    model_id=\"xgb-classifier\",\n    model=xgb_model,\n    feature_names=[\"f0\", \"f1\", \"f2\", \"f3\", \"f4\"],\n)\n\n# Exercise the ML model in Elasticsearch with the training data\n>>> es_model.predict(training_data[0])\n[0 1 1 0 1 0 0 0 1 0]\n```\n\n### NLP with PyTorch\n\nFor NLP tasks, Eland allows importing PyTorch trained BERT models into Elasticsearch. Models can be either plain PyTorch\nmodels, or supported [transformers](https://huggingface.co/transformers) models from the\n[Hugging Face model hub](https://huggingface.co/models).\n\n```bash\n$ eland_import_hub_model \\\n  --url http://localhost:9200/ \\\n  --hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \\\n  --task-type ner \\\n  --start\n```\n\nThe example above will automatically start a model deployment. This is a\ngood shortcut for initial experimentation, but for anything that needs\ngood throughput you should omit the `--start` argument from the Eland\ncommand line and instead start the model using the ML UI in Kibana.\nThe `--start` argument will deploy the model with one allocation and one\nthread per allocation, which will not offer good performance. When starting\nthe model deployment using the ML UI in Kibana or the Elasticsearch\n[API](https://www.elastic.co/guide/en/elasticsearch/reference/current/start-trained-model-deployment.html)\nyou will be able to set the threading options to make the best use of your\nhardware.\n\n```python\n>>> import elasticsearch\n>>> from pathlib import Path\n>>> from eland.common import es_version\n>>> from eland.ml.pytorch import PyTorchModel\n>>> from eland.ml.pytorch.transformers import TransformerModel\n\n>>> es = elasticsearch.Elasticsearch(\"http://elastic:mlqa_admin@localhost:9200\")\n>>> es_cluster_version = es_version(es)\n\n# Load a Hugging Face transformers model directly from the model hub\n>>> tm = TransformerModel(model_id=\"elastic/distilbert-base-cased-finetuned-conll03-english\", task_type=\"ner\", es_version=es_cluster_version)\nDownloading: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 257/257 [00:00<00:00, 108kB/s]\nDownloading: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 954/954 [00:00<00:00, 372kB/s]\nDownloading: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 208k/208k [00:00<00:00, 668kB/s] \nDownloading: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 112/112 [00:00<00:00, 43.9kB/s]\nDownloading: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 249M/249M [00:23<00:00, 11.2MB/s]\n\n# Export the model in a TorchScrpt representation which Elasticsearch uses\n>>> tmp_path = \"models\"\n>>> Path(tmp_path).mkdir(parents=True, exist_ok=True)\n>>> model_path, config, vocab_path = tm.save(tmp_path)\n\n# Import model into Elasticsearch\n>>> ptm = PyTorchModel(es, tm.elasticsearch_model_id())\n>>> ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)\n100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 63/63 [00:12<00:00,  5.02it/s]\n```\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "[Development fork!] Python Client and Toolkit for DataFrames, Big Data, Machine Learning and ETL in Elasticsearch",
    "version": "8.17.0",
    "project_urls": {
        "Homepage": "https://github.com/elastic/eland"
    },
    "split_keywords": [
        "elastic",
        "eland",
        "pandas",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bfb2ded39adc5f7db447c21f48c447201608d708d11cbdfb1339488a83a279a6",
                "md5": "66c0f9de339da10c8ffcff34fb040707",
                "sha256": "9c2a483d04ef6da91342949b8956378f5191e99f8997c9b635ea37b066dad466"
            },
            "downloads": -1,
            "filename": "bartbroere_eland-8.17.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "66c0f9de339da10c8ffcff34fb040707",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.8",
            "size": 182049,
            "upload_time": "2025-01-10T13:39:54",
            "upload_time_iso_8601": "2025-01-10T13:39:54.515827Z",
            "url": "https://files.pythonhosted.org/packages/bf/b2/ded39adc5f7db447c21f48c447201608d708d11cbdfb1339488a83a279a6/bartbroere_eland-8.17.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-10 13:39:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "elastic",
    "github_project": "eland",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "bartbroere-eland"
}
        
Elapsed time: 1.07009s