baserush


Namebaserush JSON
Version 0.0.1 PyPI version JSON
download
home_pageNone
SummaryAn easy-to-use regression pipeline to preprocess, analyze, and optimize models.
upload_time2025-10-14 23:07:39
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords regression scikit-learn machine-learning preprocessing model-selection model-optimization linear-modeling nonparametric-modeling knn
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # baserush

![PyPI](https://img.shields.io/pypi/v/baserush)
![License](https://img.shields.io/github/license/chase-kusterer/baserush)

Stable base modeling made quick and easy.

`baserush` is an easy-to-use regression pipeline for preprocessing, optimizing, and summarizing machine learning models within the `scikit-learn` framework. This package is ideal for efficiently building and comparing **stable models** from different model types.

### Supported Model Types

<u>Linear Models</u>
 * LinearRegression
 * Lasso
 * Ridge
 * SGDRegressor

<u>Neighbors Models</u>
 * KNeighborsRegressor
 * RadiusNeighborsRegressor

<u>CaRT Models</u>
 * DecisionTreeRegressor
 * ExtraTreeRegressor

<u>Ensemble Models</u>
 * RandomForestRegressor
 * GradientBoostingRegressor
 * ExtraTreesRegressor
 * RandomTreesEmbedding


## Package Modules

- `preprocess`: missing values, skewness, standardization, and categorical transformations
- `optimize`: automatic feature selection; hyperparameter analysis
- `summary`: training and validation R-Squared, stability tools; model-specific outputs


---

## `preprocess`ing Features

- `simputer` makes it simple to flag and impute missing values.
- Quickly alleviate skewness with `transtorm`.
- Use `simple_scaler` to seamlessly standardize features.
- Efficiently prepare categorical data for modeling with `catcoder`.

## `optimize`-ation Features
- Base modeling made easy with
  - `quick_lm` (with automated feature selection)
  - `quick_tree`, (includes very fast automated hyperparameter tuning)
  - `quick_neighbors`, (automatically tunes n neighbors)

- Use `tuning_results` to analyze the top n-models after hyperparameter tuning
  with GridSeachCV | RandomizedSearchCV. 


## `summary` Features
`lr_summary`, `tree_summary`, and `knn_summary`
- Automatically instantiate customizable training and validation sets.
- Generate a dataset of model summaries for easy comparison, including:
  * Model Name
  * Model Class
  * Model Type
  * R-Squared (Training Set)
  * R-Squared (Validation Set)
  * Train-Test Gap
  * Model-Specific:
    * Model Coefficients
    * Feature Importance
    * Hyperparameter Values

---

## Installation

Install using pip:

```bash
pip install baserush
```

---

## Example Usage

```python
print("Examples coming soon.")
```

---

## License

MIT License. See [LICENSE](LICENSE) for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "baserush",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "regression, scikit-learn, machine-learning, preprocessing, model-selection, model-optimization, linear-modeling, nonparametric-modeling, knn",
    "author": null,
    "author_email": "Chase Kusterer <chase.kusterer24@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/6b/56/0b9221babdcbcdbfd6cf0d62cd9cc207202996494a0dcab22540f92ec5c0/baserush-0.0.1.tar.gz",
    "platform": null,
    "description": "# baserush\n\n![PyPI](https://img.shields.io/pypi/v/baserush)\n![License](https://img.shields.io/github/license/chase-kusterer/baserush)\n\nStable base modeling made quick and easy.\n\n`baserush` is an easy-to-use regression pipeline for preprocessing, optimizing, and summarizing machine learning models within the `scikit-learn` framework. This package is ideal for efficiently building and comparing **stable models** from different model types.\n\n### Supported Model Types\n\n<u>Linear Models</u>\n * LinearRegression\n * Lasso\n * Ridge\n * SGDRegressor\n\n<u>Neighbors Models</u>\n * KNeighborsRegressor\n * RadiusNeighborsRegressor\n\n<u>CaRT Models</u>\n * DecisionTreeRegressor\n * ExtraTreeRegressor\n\n<u>Ensemble Models</u>\n * RandomForestRegressor\n * GradientBoostingRegressor\n * ExtraTreesRegressor\n * RandomTreesEmbedding\n\n\n## Package Modules\n\n- `preprocess`: missing values, skewness, standardization, and categorical transformations\n- `optimize`: automatic feature selection; hyperparameter analysis\n- `summary`: training and validation R-Squared, stability tools; model-specific outputs\n\n\n---\n\n## `preprocess`ing Features\n\n- `simputer` makes it simple to flag and impute missing values.\n- Quickly alleviate skewness with `transtorm`.\n- Use `simple_scaler` to seamlessly standardize features.\n- Efficiently prepare categorical data for modeling with `catcoder`.\n\n## `optimize`-ation Features\n- Base modeling made easy with\n  - `quick_lm` (with automated feature selection)\n  - `quick_tree`, (includes very fast automated hyperparameter tuning)\n  - `quick_neighbors`, (automatically tunes n neighbors)\n\n- Use `tuning_results` to analyze the top n-models after hyperparameter tuning\n  with GridSeachCV | RandomizedSearchCV. \n\n\n## `summary` Features\n`lr_summary`, `tree_summary`, and `knn_summary`\n- Automatically instantiate customizable training and validation sets.\n- Generate a dataset of model summaries for easy comparison, including:\n  * Model Name\n  * Model Class\n  * Model Type\n  * R-Squared (Training Set)\n  * R-Squared (Validation Set)\n  * Train-Test Gap\n  * Model-Specific:\n    * Model Coefficients\n    * Feature Importance\n    * Hyperparameter Values\n\n---\n\n## Installation\n\nInstall using pip:\n\n```bash\npip install baserush\n```\n\n---\n\n## Example Usage\n\n```python\nprint(\"Examples coming soon.\")\n```\n\n---\n\n## License\n\nMIT License. See [LICENSE](LICENSE) for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "An easy-to-use regression pipeline to preprocess, analyze, and optimize models.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/chase-kusterer/basemodeler",
        "Issues": "https://github.com/chase-kusterer/basemodeler/issues"
    },
    "split_keywords": [
        "regression",
        " scikit-learn",
        " machine-learning",
        " preprocessing",
        " model-selection",
        " model-optimization",
        " linear-modeling",
        " nonparametric-modeling",
        " knn"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "da9c775640a59f78b1f517f2f57db912eda9b3444a314ab5701b1fa4345b4979",
                "md5": "be486eb7163d730c3aa350bb99006a54",
                "sha256": "a4f35de39679d4534f0ca5c12c33fb89430fdd10f2b4ce5b74330695c2b1f012"
            },
            "downloads": -1,
            "filename": "baserush-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "be486eb7163d730c3aa350bb99006a54",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 17331,
            "upload_time": "2025-10-14T23:07:37",
            "upload_time_iso_8601": "2025-10-14T23:07:37.842322Z",
            "url": "https://files.pythonhosted.org/packages/da/9c/775640a59f78b1f517f2f57db912eda9b3444a314ab5701b1fa4345b4979/baserush-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6b560b9221babdcbcdbfd6cf0d62cd9cc207202996494a0dcab22540f92ec5c0",
                "md5": "a4c5dba2befe5c108dc95ba53a78cb5c",
                "sha256": "873bdd1ca34175fb4f50489000f0acb2749d1cfdae1353f5c0d66abcd4fb73e2"
            },
            "downloads": -1,
            "filename": "baserush-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "a4c5dba2befe5c108dc95ba53a78cb5c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 15931,
            "upload_time": "2025-10-14T23:07:39",
            "upload_time_iso_8601": "2025-10-14T23:07:39.219053Z",
            "url": "https://files.pythonhosted.org/packages/6b/56/0b9221babdcbcdbfd6cf0d62cd9cc207202996494a0dcab22540f92ec5c0/baserush-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-14 23:07:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "chase-kusterer",
    "github_project": "basemodeler",
    "github_not_found": true,
    "lcname": "baserush"
}
        
Elapsed time: 1.80465s