# baserush


Stable base modeling made quick and easy.
`baserush` is an easy-to-use regression pipeline for preprocessing, optimizing, and summarizing machine learning models within the `scikit-learn` framework. This package is ideal for efficiently building and comparing **stable models** from different model types.
### Supported Model Types
<u>Linear Models</u>
* LinearRegression
* Lasso
* Ridge
* SGDRegressor
<u>Neighbors Models</u>
* KNeighborsRegressor
* RadiusNeighborsRegressor
<u>CaRT Models</u>
* DecisionTreeRegressor
* ExtraTreeRegressor
<u>Ensemble Models</u>
* RandomForestRegressor
* GradientBoostingRegressor
* ExtraTreesRegressor
* RandomTreesEmbedding
## Package Modules
- `preprocess`: missing values, skewness, standardization, and categorical transformations
- `optimize`: automatic feature selection; hyperparameter analysis
- `summary`: training and validation R-Squared, stability tools; model-specific outputs
---
## `preprocess`ing Features
- `simputer` makes it simple to flag and impute missing values.
- Quickly alleviate skewness with `transtorm`.
- Use `simple_scaler` to seamlessly standardize features.
- Efficiently prepare categorical data for modeling with `catcoder`.
## `optimize`-ation Features
- Base modeling made easy with
- `quick_lm` (with automated feature selection)
- `quick_tree`, (includes very fast automated hyperparameter tuning)
- `quick_neighbors`, (automatically tunes n neighbors)
- Use `tuning_results` to analyze the top n-models after hyperparameter tuning
with GridSeachCV | RandomizedSearchCV.
## `summary` Features
`lr_summary`, `tree_summary`, and `knn_summary`
- Automatically instantiate customizable training and validation sets.
- Generate a dataset of model summaries for easy comparison, including:
* Model Name
* Model Class
* Model Type
* R-Squared (Training Set)
* R-Squared (Validation Set)
* Train-Test Gap
* Model-Specific:
* Model Coefficients
* Feature Importance
* Hyperparameter Values
---
## Installation
Install using pip:
```bash
pip install baserush
```
---
## Example Usage
```python
print("Examples coming soon.")
```
---
## License
MIT License. See [LICENSE](LICENSE) for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "baserush",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "regression, scikit-learn, machine-learning, preprocessing, model-selection, model-optimization, linear-modeling, nonparametric-modeling, knn",
"author": null,
"author_email": "Chase Kusterer <chase.kusterer24@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/6b/56/0b9221babdcbcdbfd6cf0d62cd9cc207202996494a0dcab22540f92ec5c0/baserush-0.0.1.tar.gz",
"platform": null,
"description": "# baserush\n\n\n\n\nStable base modeling made quick and easy.\n\n`baserush` is an easy-to-use regression pipeline for preprocessing, optimizing, and summarizing machine learning models within the `scikit-learn` framework. This package is ideal for efficiently building and comparing **stable models** from different model types.\n\n### Supported Model Types\n\n<u>Linear Models</u>\n * LinearRegression\n * Lasso\n * Ridge\n * SGDRegressor\n\n<u>Neighbors Models</u>\n * KNeighborsRegressor\n * RadiusNeighborsRegressor\n\n<u>CaRT Models</u>\n * DecisionTreeRegressor\n * ExtraTreeRegressor\n\n<u>Ensemble Models</u>\n * RandomForestRegressor\n * GradientBoostingRegressor\n * ExtraTreesRegressor\n * RandomTreesEmbedding\n\n\n## Package Modules\n\n- `preprocess`: missing values, skewness, standardization, and categorical transformations\n- `optimize`: automatic feature selection; hyperparameter analysis\n- `summary`: training and validation R-Squared, stability tools; model-specific outputs\n\n\n---\n\n## `preprocess`ing Features\n\n- `simputer` makes it simple to flag and impute missing values.\n- Quickly alleviate skewness with `transtorm`.\n- Use `simple_scaler` to seamlessly standardize features.\n- Efficiently prepare categorical data for modeling with `catcoder`.\n\n## `optimize`-ation Features\n- Base modeling made easy with\n - `quick_lm` (with automated feature selection)\n - `quick_tree`, (includes very fast automated hyperparameter tuning)\n - `quick_neighbors`, (automatically tunes n neighbors)\n\n- Use `tuning_results` to analyze the top n-models after hyperparameter tuning\n with GridSeachCV | RandomizedSearchCV. \n\n\n## `summary` Features\n`lr_summary`, `tree_summary`, and `knn_summary`\n- Automatically instantiate customizable training and validation sets.\n- Generate a dataset of model summaries for easy comparison, including:\n * Model Name\n * Model Class\n * Model Type\n * R-Squared (Training Set)\n * R-Squared (Validation Set)\n * Train-Test Gap\n * Model-Specific:\n * Model Coefficients\n * Feature Importance\n * Hyperparameter Values\n\n---\n\n## Installation\n\nInstall using pip:\n\n```bash\npip install baserush\n```\n\n---\n\n## Example Usage\n\n```python\nprint(\"Examples coming soon.\")\n```\n\n---\n\n## License\n\nMIT License. See [LICENSE](LICENSE) for details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "An easy-to-use regression pipeline to preprocess, analyze, and optimize models.",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/chase-kusterer/basemodeler",
"Issues": "https://github.com/chase-kusterer/basemodeler/issues"
},
"split_keywords": [
"regression",
" scikit-learn",
" machine-learning",
" preprocessing",
" model-selection",
" model-optimization",
" linear-modeling",
" nonparametric-modeling",
" knn"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "da9c775640a59f78b1f517f2f57db912eda9b3444a314ab5701b1fa4345b4979",
"md5": "be486eb7163d730c3aa350bb99006a54",
"sha256": "a4f35de39679d4534f0ca5c12c33fb89430fdd10f2b4ce5b74330695c2b1f012"
},
"downloads": -1,
"filename": "baserush-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "be486eb7163d730c3aa350bb99006a54",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 17331,
"upload_time": "2025-10-14T23:07:37",
"upload_time_iso_8601": "2025-10-14T23:07:37.842322Z",
"url": "https://files.pythonhosted.org/packages/da/9c/775640a59f78b1f517f2f57db912eda9b3444a314ab5701b1fa4345b4979/baserush-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6b560b9221babdcbcdbfd6cf0d62cd9cc207202996494a0dcab22540f92ec5c0",
"md5": "a4c5dba2befe5c108dc95ba53a78cb5c",
"sha256": "873bdd1ca34175fb4f50489000f0acb2749d1cfdae1353f5c0d66abcd4fb73e2"
},
"downloads": -1,
"filename": "baserush-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "a4c5dba2befe5c108dc95ba53a78cb5c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 15931,
"upload_time": "2025-10-14T23:07:39",
"upload_time_iso_8601": "2025-10-14T23:07:39.219053Z",
"url": "https://files.pythonhosted.org/packages/6b/56/0b9221babdcbcdbfd6cf0d62cd9cc207202996494a0dcab22540f92ec5c0/baserush-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-14 23:07:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "chase-kusterer",
"github_project": "basemodeler",
"github_not_found": true,
"lcname": "baserush"
}