bask


Namebask JSON
Version 0.10.9 PyPI version JSON
download
home_pagehttps://github.com/kiudee/bayes-skopt
SummaryA fully Bayesian implementation of sequential model-based optimization
upload_time2023-07-19 14:39:14
maintainer
docs_urlNone
authorKarlson Pfannschmidt
requires_python>=3.8,<3.10
licenseApache-2.0
keywords optimization bayesian hyperparameters robust
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            


.. image:: https://github.com/kiudee/bayes-skopt/raw/master/docs/images/header.png
   :width: 800 px
   :alt: Bayes-skopt header
   :align: center

===========
Bayes-skopt
===========

.. image:: https://mybinder.org/badge_logo.svg
        :target: https://mybinder.org/v2/gh/kiudee/bayes-skopt/master?filepath=examples

.. image:: https://img.shields.io/pypi/v/bask.svg
        :target: https://pypi.python.org/pypi/bask

.. image:: https://img.shields.io/travis/kiudee/bayes-skopt.svg
        :target: https://travis-ci.org/kiudee/bayes-skopt

.. image:: https://readthedocs.org/projects/bayes-skopt/badge/?version=latest
        :target: https://bayes-skopt.readthedocs.io/en/latest/?badge=latest
        :alt: Documentation Status

A fully Bayesian implementation of sequential model-based optimization


* Free software: Apache Software License 2.0
* Documentation: https://bayes-skopt.readthedocs.io.
* Built on top of the excellent `Scikit-Optimize (skopt) <https://github.com/scikit-optimize/scikit-optimize>`__.


Features
--------

- A **fully Bayesian** variant of the ``GaussianProcessRegressor``.
- State of the art information-theoretic acquisition functions, such as the
  `Max-value entropy search <https://arxiv.org/abs/1703.01968>`__ or
  `Predictive variance reduction search <https://bayesopt.github.io/papers/2017/13.pdf>`__, for even faster
  convergence in simple regret.
- Familiar `Optimizer` interface known from Scikit-Optimize.

Installation
------------

To install the latest stable release it is best to install the version on PyPI::

   pip install bask

The latest development version of Bayes-skopt can be installed from Github as follows::

   pip install git+https://github.com/kiudee/bayes-skopt

Another option is to clone the repository and install Bayes-skopt using::

   poetry install

Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kiudee/bayes-skopt",
    "name": "bask",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<3.10",
    "maintainer_email": "",
    "keywords": "optimization,bayesian,hyperparameters,robust",
    "author": "Karlson Pfannschmidt",
    "author_email": "kiudee@mail.upb.de",
    "download_url": "https://files.pythonhosted.org/packages/ac/85/2682df48f2d979a3ed3a90701718e6788e368841b7c53104a3af3ce2367d/bask-0.10.9.tar.gz",
    "platform": null,
    "description": "\n\n\n.. image:: https://github.com/kiudee/bayes-skopt/raw/master/docs/images/header.png\n   :width: 800 px\n   :alt: Bayes-skopt header\n   :align: center\n\n===========\nBayes-skopt\n===========\n\n.. image:: https://mybinder.org/badge_logo.svg\n        :target: https://mybinder.org/v2/gh/kiudee/bayes-skopt/master?filepath=examples\n\n.. image:: https://img.shields.io/pypi/v/bask.svg\n        :target: https://pypi.python.org/pypi/bask\n\n.. image:: https://img.shields.io/travis/kiudee/bayes-skopt.svg\n        :target: https://travis-ci.org/kiudee/bayes-skopt\n\n.. image:: https://readthedocs.org/projects/bayes-skopt/badge/?version=latest\n        :target: https://bayes-skopt.readthedocs.io/en/latest/?badge=latest\n        :alt: Documentation Status\n\nA fully Bayesian implementation of sequential model-based optimization\n\n\n* Free software: Apache Software License 2.0\n* Documentation: https://bayes-skopt.readthedocs.io.\n* Built on top of the excellent `Scikit-Optimize (skopt) <https://github.com/scikit-optimize/scikit-optimize>`__.\n\n\nFeatures\n--------\n\n- A **fully Bayesian** variant of the ``GaussianProcessRegressor``.\n- State of the art information-theoretic acquisition functions, such as the\n  `Max-value entropy search <https://arxiv.org/abs/1703.01968>`__ or\n  `Predictive variance reduction search <https://bayesopt.github.io/papers/2017/13.pdf>`__, for even faster\n  convergence in simple regret.\n- Familiar `Optimizer` interface known from Scikit-Optimize.\n\nInstallation\n------------\n\nTo install the latest stable release it is best to install the version on PyPI::\n\n   pip install bask\n\nThe latest development version of Bayes-skopt can be installed from Github as follows::\n\n   pip install git+https://github.com/kiudee/bayes-skopt\n\nAnother option is to clone the repository and install Bayes-skopt using::\n\n   poetry install\n\nCredits\n-------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "A fully Bayesian implementation of sequential model-based optimization",
    "version": "0.10.9",
    "project_urls": {
        "Bug Tracker": "https://github.com/kiudee/bayes-skopt/issues",
        "Documentation": "https://bayes-skopt.readthedocs.io",
        "Homepage": "https://github.com/kiudee/bayes-skopt",
        "Repository": "https://github.com/kiudee/bayes-skopt"
    },
    "split_keywords": [
        "optimization",
        "bayesian",
        "hyperparameters",
        "robust"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d108c1e79e6540e97a5c25d0fc583029f8294fd9f4f88cbb43dd8f9fd295041",
                "md5": "8d78f4b69abd1699bf850a3ec9a10639",
                "sha256": "6a9c08d0a9e9187a3f6858bf27debc2aa3b3dac96ce6a74c2d9d9854c4edcc3e"
            },
            "downloads": -1,
            "filename": "bask-0.10.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8d78f4b69abd1699bf850a3ec9a10639",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<3.10",
            "size": 31683,
            "upload_time": "2023-07-19T14:39:12",
            "upload_time_iso_8601": "2023-07-19T14:39:12.848352Z",
            "url": "https://files.pythonhosted.org/packages/8d/10/8c1e79e6540e97a5c25d0fc583029f8294fd9f4f88cbb43dd8f9fd295041/bask-0.10.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac852682df48f2d979a3ed3a90701718e6788e368841b7c53104a3af3ce2367d",
                "md5": "f4d31cdb3c4671b491a0e8166d3221d9",
                "sha256": "69ebd13af5d4db82051662ab889bdb5e8e2b2f55fe11b33dc309c4b1949f4198"
            },
            "downloads": -1,
            "filename": "bask-0.10.9.tar.gz",
            "has_sig": false,
            "md5_digest": "f4d31cdb3c4671b491a0e8166d3221d9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<3.10",
            "size": 28456,
            "upload_time": "2023-07-19T14:39:14",
            "upload_time_iso_8601": "2023-07-19T14:39:14.189316Z",
            "url": "https://files.pythonhosted.org/packages/ac/85/2682df48f2d979a3ed3a90701718e6788e368841b7c53104a3af3ce2367d/bask-0.10.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-19 14:39:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kiudee",
    "github_project": "bayes-skopt",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "bask"
}
        
Elapsed time: 0.24432s