batch-processor-custom


Namebatch-processor-custom JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryUm pacote para processamento em lote usando MongoDB
upload_time2024-06-25 10:37:11
maintainerNone
docs_urlNone
authorVitor
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Batch Processor Custom

This package provides an efficient solution for batch processing of data in MongoDB collections. It enables reading, locking, processing, and unlocking records in batches, facilitating the management and scalable processing of large data volumes.

## Features

- Configurable connection to any MongoDB instance.
- Efficient handling of record locking and unlocking to ensure data integrity during batch processing.
- Ability to process batches of specified size, suitable for large-scale data operations.

## Installation

You can install this package using pip:

```bash
pip install batch_processor_custom

## Usage


from batch_processor_custom import BatchProcessor

# Initialize the processor
processor = BatchProcessor('mongodb://localhost:27017', 'your_database', 'your_collection')

# Process batches
for batch_id, records in processor.process_batches(10, 100):
    print(f'Processing batch {batch_id}')
    # Here you can add your processing logic
    processor.unlock_records([record['_id'] for record in records])

##License

This project is licensed under the MIT License - see the LICENSE file for details.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "batch-processor-custom",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Vitor",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/a3/4f/8a613f4b88cf8ec61be8ff4182aaa00d93c885f29d602d9d1a1256867275/batch_processor_custom-0.1.1.tar.gz",
    "platform": null,
    "description": "# Batch Processor Custom\r\n\r\nThis package provides an efficient solution for batch processing of data in MongoDB collections. It enables reading, locking, processing, and unlocking records in batches, facilitating the management and scalable processing of large data volumes.\r\n\r\n## Features\r\n\r\n- Configurable connection to any MongoDB instance.\r\n- Efficient handling of record locking and unlocking to ensure data integrity during batch processing.\r\n- Ability to process batches of specified size, suitable for large-scale data operations.\r\n\r\n## Installation\r\n\r\nYou can install this package using pip:\r\n\r\n```bash\r\npip install batch_processor_custom\r\n\r\n## Usage\r\n\r\n\r\nfrom batch_processor_custom import BatchProcessor\r\n\r\n# Initialize the processor\r\nprocessor = BatchProcessor('mongodb://localhost:27017', 'your_database', 'your_collection')\r\n\r\n# Process batches\r\nfor batch_id, records in processor.process_batches(10, 100):\r\n    print(f'Processing batch {batch_id}')\r\n    # Here you can add your processing logic\r\n    processor.unlock_records([record['_id'] for record in records])\r\n\r\n##License\r\n\r\nThis project is licensed under the MIT License - see the LICENSE file for details.\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Um pacote para processamento em lote usando MongoDB",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c6869ab9ef74f5d699a08ca51e3928dd27cbef98e49ff0a2a1d7d307f5e6f2a1",
                "md5": "228fe48c1a8f972f75abbfd6cf01f0c0",
                "sha256": "b4446802537a7aa0fd2edc6de5006a8319070ec7e926d16b87e9eaa11be2724c"
            },
            "downloads": -1,
            "filename": "batch_processor_custom-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "228fe48c1a8f972f75abbfd6cf01f0c0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 4126,
            "upload_time": "2024-06-25T10:37:09",
            "upload_time_iso_8601": "2024-06-25T10:37:09.905084Z",
            "url": "https://files.pythonhosted.org/packages/c6/86/9ab9ef74f5d699a08ca51e3928dd27cbef98e49ff0a2a1d7d307f5e6f2a1/batch_processor_custom-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a34f8a613f4b88cf8ec61be8ff4182aaa00d93c885f29d602d9d1a1256867275",
                "md5": "7c0a48f79ab778cf8e6485dad209d6d7",
                "sha256": "e14dd4e0dd4d62cb24d15b7ad53841b82e8c1fb376bc610952adaf6e5ab53e87"
            },
            "downloads": -1,
            "filename": "batch_processor_custom-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7c0a48f79ab778cf8e6485dad209d6d7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 3534,
            "upload_time": "2024-06-25T10:37:11",
            "upload_time_iso_8601": "2024-06-25T10:37:11.089528Z",
            "url": "https://files.pythonhosted.org/packages/a3/4f/8a613f4b88cf8ec61be8ff4182aaa00d93c885f29d602d9d1a1256867275/batch_processor_custom-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-25 10:37:11",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "batch-processor-custom"
}
        
Elapsed time: 0.25212s