Name | bcitoolbox JSON |
Version |
0.1.0.2
JSON |
| download |
home_page | None |
Summary | A zero-programming package for Bayesian causal inference model |
upload_time | 2024-05-21 13:11:37 |
maintainer | None |
docs_url | None |
author | evans.zhu |
requires_python | None |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
BCI Toolbox is a Python implementation of the hierarchical Bayesian Causal Inference (BCI) model for multisensory research. BCI model is a statistical framework for understanding the causal relationships between sensory inputs and prior expectations of a common cause, which can account for human perception in a number of tasks, including temporal numerosity judgment (Shams et al., 2005; Wozny et al., 2008), spatial localization judgment (Körding et al., 2007; Wozny & Shams, 2011), size-weight illusion paradigm (Peters et al., 2016), rubber-hand illusion paradigm (Chancel et al., 2022; Chancel & Ehrsson, 2023).
Raw data
{
"_id": null,
"home_page": null,
"name": "bcitoolbox",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "evans.zhu",
"author_email": "evanszhu2001@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/97/6e/961ed1b90112f9640bc24beda2a255d90a85c0c5f4d5d66d52d150916e83/bcitoolbox-0.1.0.2.tar.gz",
"platform": null,
"description": "BCI Toolbox is a Python implementation of the hierarchical Bayesian Causal Inference (BCI) model for multisensory research. BCI model is a statistical framework for understanding the causal relationships between sensory inputs and prior expectations of a common cause, which can account for human perception in a number of tasks, including temporal numerosity judgment (Shams et al., 2005; Wozny et al., 2008), spatial localization judgment (K\u00f6rding et al., 2007; Wozny & Shams, 2011), size-weight illusion paradigm (Peters et al., 2016), rubber-hand illusion paradigm (Chancel et al., 2022; Chancel & Ehrsson, 2023).\n",
"bugtrack_url": null,
"license": null,
"summary": "A zero-programming package for Bayesian causal inference model",
"version": "0.1.0.2",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "35fd6b3305f5fb81d23ed8a6a108fc51836cb04e35e78c5e828c1f14f9c5e793",
"md5": "c4fea0ebffdc629b0969ca25241f6bb8",
"sha256": "7fb2a69021cd3d39568ada3da0b172d4c682456876791302dc3ed17eaee9d955"
},
"downloads": -1,
"filename": "bcitoolbox-0.1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c4fea0ebffdc629b0969ca25241f6bb8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 32708,
"upload_time": "2024-05-21T13:11:35",
"upload_time_iso_8601": "2024-05-21T13:11:35.866359Z",
"url": "https://files.pythonhosted.org/packages/35/fd/6b3305f5fb81d23ed8a6a108fc51836cb04e35e78c5e828c1f14f9c5e793/bcitoolbox-0.1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "976e961ed1b90112f9640bc24beda2a255d90a85c0c5f4d5d66d52d150916e83",
"md5": "a303d7cf0c211758aa5e245dff86a671",
"sha256": "d5d849f8a64dc51f9909aa27b89689c068ead6249b45a9150b38acc45995719a"
},
"downloads": -1,
"filename": "bcitoolbox-0.1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "a303d7cf0c211758aa5e245dff86a671",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 29028,
"upload_time": "2024-05-21T13:11:37",
"upload_time_iso_8601": "2024-05-21T13:11:37.894580Z",
"url": "https://files.pythonhosted.org/packages/97/6e/961ed1b90112f9640bc24beda2a255d90a85c0c5f4d5d66d52d150916e83/bcitoolbox-0.1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-21 13:11:37",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "bcitoolbox"
}