Name | bcitoolbox JSON |
Version |
0.1.0.6
JSON |
| download |
home_page | None |
Summary | A zero-programming package for Bayesian causal inference model |
upload_time | 2025-07-14 21:41:18 |
maintainer | None |
docs_url | None |
author | evans.zhu |
requires_python | None |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
BCI Toolbox is a Python implementation of the hierarchical Bayesian Causal Inference (BCI) model for multisensory research. BCI model is a statistical framework for understanding the causal relationships between sensory inputs and prior expectations of a common cause, which can account for human perception in a number of tasks, including temporal numerosity judgment (Shams et al., 2005; Wozny et al., 2008), spatial localization judgment (Körding et al., 2007; Wozny & Shams, 2011), size-weight illusion paradigm (Peters et al., 2016), rubber-hand illusion paradigm (Chancel et al., 2022; Chancel & Ehrsson, 2023).
Raw data
{
"_id": null,
"home_page": null,
"name": "bcitoolbox",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "evans.zhu",
"author_email": "evanszhu2001@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c8/02/2c46d385fc0c8b98befebf68f4a9ed04cbcba4df70d642a14b73de0cfc18/bcitoolbox-0.1.0.6.tar.gz",
"platform": null,
"description": "BCI Toolbox is a Python implementation of the hierarchical Bayesian Causal Inference (BCI) model for multisensory research. BCI model is a statistical framework for understanding the causal relationships between sensory inputs and prior expectations of a common cause, which can account for human perception in a number of tasks, including temporal numerosity judgment (Shams et al., 2005; Wozny et al., 2008), spatial localization judgment (K\u00f6rding et al., 2007; Wozny & Shams, 2011), size-weight illusion paradigm (Peters et al., 2016), rubber-hand illusion paradigm (Chancel et al., 2022; Chancel & Ehrsson, 2023).\n",
"bugtrack_url": null,
"license": null,
"summary": "A zero-programming package for Bayesian causal inference model",
"version": "0.1.0.6",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7ff82df2b0a18b369346aa12bbb4dd575e602b8ba328e7cfbe3ffa4aca6ef2c7",
"md5": "d338c74c1fc46c606a413032efd0fc71",
"sha256": "1e440c711cc9a75dc106a6a989e99b793aa492c7dda7c88a889d3a01b2c430ad"
},
"downloads": -1,
"filename": "bcitoolbox-0.1.0.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d338c74c1fc46c606a413032efd0fc71",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 32943,
"upload_time": "2025-07-14T21:41:17",
"upload_time_iso_8601": "2025-07-14T21:41:17.548247Z",
"url": "https://files.pythonhosted.org/packages/7f/f8/2df2b0a18b369346aa12bbb4dd575e602b8ba328e7cfbe3ffa4aca6ef2c7/bcitoolbox-0.1.0.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c8022c46d385fc0c8b98befebf68f4a9ed04cbcba4df70d642a14b73de0cfc18",
"md5": "8b9484590895efafe7db0f29bc59d4af",
"sha256": "503741a0aaa89b6d80e50ee9ba940b465ab4c5ed418d0d48de5f5e87fc41b6bb"
},
"downloads": -1,
"filename": "bcitoolbox-0.1.0.6.tar.gz",
"has_sig": false,
"md5_digest": "8b9484590895efafe7db0f29bc59d4af",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 29332,
"upload_time": "2025-07-14T21:41:18",
"upload_time_iso_8601": "2025-07-14T21:41:18.976686Z",
"url": "https://files.pythonhosted.org/packages/c8/02/2c46d385fc0c8b98befebf68f4a9ed04cbcba4df70d642a14b73de0cfc18/bcitoolbox-0.1.0.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-14 21:41:18",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "bcitoolbox"
}