beetroots


Namebeetroots JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/pierrePalud/beetroots
SummaryBeetroots (BayEsian infErence with spaTial Regularization of nOisy multi-line ObservaTion mapS)
upload_time2024-11-27 09:00:32
maintainerNone
docs_urlNone
authorPierre Palud
requires_python<3.12,>=3.9
licenseMIT
keywords bayesian inference statistics artificial intelligence multi-line maps interstellar medium
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # beetroots

[![PyPI version](https://badge.fury.io/py/beetroots.svg)](https://badge.fury.io/py/beetroots)
[![Documentation Status](https://readthedocs.org/projects/beetroots/badge/?version=latest)](https://beetroots.readthedocs.io/en/latest/?badge=latest)

Beetroots (BayEsian infErence with spaTial Regularization of nOisy multi-line ObservaTion mapS) is a Python package that performs Bayesian inference of physical parameters from multispectral-structured cubes with a dedicated sampling algorithm.
Thanks to this sampling algorithm, `beetroots` provides maps of credibility intervals along with estimated maps.

The sampling algorithm is introduced in

> \[1\] P. Palud, P.-A. Thouvenin, P. Chainais, E. Bron, and F. Le Petit - **Efficient sampling of non log-concave posterior distributions with mixture of noises**, *IEEE Transactions on Signal Processing*, vol. 71, pp. 2491 -- 2501, 2023. [doi:10.1109/TSP.2023.3289728](https://doi.org/10.1109/TSP.2023.3289728)

Such inversions rely on a forward model that is assumed to emulate accurately the physics of the observed environment.
In parallel of the inversion, `beetroots` tests this hypothesis to evaluate the validity of the inference results.
The testing method is described in (in French)

> \[2\] P. Palud, P. Chainais, F. Le Petit, P.-A. Thouvenin and E. Bron - **Problèmes inverses et test bayésien d'adéquation du modèle**, *GRETSI - Groupe de Recherche en Traitement du Signal et des Images* in *29e Colloque sur le traitement du signal et des images*, Grenoble, pp. 705 -- 708, 2023.

This package was applied e.g., to infer physical conditions in different regions of the interstellar medium in

> \[3\] P. Palud, P.-A. Thouvenin, P. Chainais, E. Bron, F. Le Petit and ORION-B consortium - **Bayesian inversion of large interstellar medium observation maps**, in prep

It was also exploited to assert and compare the relevance of tracers and combination of tracers to constrain physical conditions in

> \[4\] L. Einig, P. Palud, A. Roueff, P.-A. Thouvenin, P. Chainais, E. Bron, F. Le Petit, J. Pety, J. Chanussot and ORION-B consortium -  **Entropy-based selection of most informative observables for inference from interstellar medium observations**, in prep

## Complex forward models

In numerous real-life applications, the forward model is a complex numerical simulation.
In the astrophysics applications presented in the documentation, the numerical simulation is replaced with a neural network-based approximation of the forward model for

- faster evaluation
- ability to evaluate derivatives

The package used to derive this approximation is `nnbma` (Neural Network-Based Model Approximation).
The GitHub repository can be found [here](https://github.com/einigl/ism-model-nn-approximation), the package [here](https://pypi.org/project/nnbma/) and the corresponding documentation [here](https://ism-model-nn-approximation.readthedocs.io/en/latest/?badge=latest).
The paper presenting this package is

> \[5\] P. Palud, L. Einig, F. Le Petit, E. Bron, P. Chainais, J. Chanussot, J. Pety, P.-A. Thouvenin and ORION-B consortium - **Neural network-based emulation of interstellar medium models**, *Astronomy & Astrophysics*, 2023, 678, pp.A198. [doi:10.1051/0004-6361/202347074](https://doi.org/10.1051/0004-6361/202347074)

## Installation and testing

To prepare and perform an inversion, we recommend installing the package.
The package can be installed with `pip`:

```shell
pip install beetroots
```

or by cloning the repo.
To clone, install and test the package, run:

```shell
git clone git@github.com:pierrePalud/beetroots.git
cd beetroots
poetry install # or poetry install -E notebook -E docs for extra dependencies
poetry shell
pytest
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pierrePalud/beetroots",
    "name": "beetroots",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.9",
    "maintainer_email": null,
    "keywords": "Bayesian inference, statistics, artificial intelligence, multi-line maps, interstellar medium",
    "author": "Pierre Palud",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/0d/66/6ce7618804360b1b2854257564d9aa77ae1e35eb660679fed9f50d9325da/beetroots-1.0.2.tar.gz",
    "platform": null,
    "description": "# beetroots\n\n[![PyPI version](https://badge.fury.io/py/beetroots.svg)](https://badge.fury.io/py/beetroots)\n[![Documentation Status](https://readthedocs.org/projects/beetroots/badge/?version=latest)](https://beetroots.readthedocs.io/en/latest/?badge=latest)\n\nBeetroots (BayEsian infErence with spaTial Regularization of nOisy multi-line ObservaTion mapS) is a Python package that performs Bayesian inference of physical parameters from multispectral-structured cubes with a dedicated sampling algorithm.\nThanks to this sampling algorithm, `beetroots` provides maps of credibility intervals along with estimated maps.\n\nThe sampling algorithm is introduced in\n\n> \\[1\\] P. Palud, P.-A. Thouvenin, P. Chainais, E. Bron, and F. Le Petit - **Efficient sampling of non log-concave posterior distributions with mixture of noises**, *IEEE Transactions on Signal Processing*, vol. 71, pp. 2491 -- 2501, 2023. [doi:10.1109/TSP.2023.3289728](https://doi.org/10.1109/TSP.2023.3289728)\n\nSuch inversions rely on a forward model that is assumed to emulate accurately the physics of the observed environment.\nIn parallel of the inversion, `beetroots` tests this hypothesis to evaluate the validity of the inference results.\nThe testing method is described in (in French)\n\n> \\[2\\] P. Palud, P. Chainais, F. Le Petit, P.-A. Thouvenin and E. Bron - **Probl\u00e8mes inverses et test bay\u00e9sien d'ad\u00e9quation du mod\u00e8le**, *GRETSI - Groupe de Recherche en Traitement du Signal et des Images* in *29e Colloque sur le traitement du signal et des images*, Grenoble, pp. 705 -- 708, 2023.\n\nThis package was applied e.g., to infer physical conditions in different regions of the interstellar medium in\n\n> \\[3\\] P. Palud, P.-A. Thouvenin, P. Chainais, E. Bron, F. Le Petit and ORION-B consortium - **Bayesian inversion of large interstellar medium observation maps**, in prep\n\nIt was also exploited to assert and compare the relevance of tracers and combination of tracers to constrain physical conditions in\n\n> \\[4\\] L. Einig, P. Palud, A. Roueff, P.-A. Thouvenin, P. Chainais, E. Bron, F. Le Petit, J. Pety, J. Chanussot and ORION-B consortium -  **Entropy-based selection of most informative observables for inference from interstellar medium observations**, in prep\n\n## Complex forward models\n\nIn numerous real-life applications, the forward model is a complex numerical simulation.\nIn the astrophysics applications presented in the documentation, the numerical simulation is replaced with a neural network-based approximation of the forward model for\n\n- faster evaluation\n- ability to evaluate derivatives\n\nThe package used to derive this approximation is `nnbma` (Neural Network-Based Model Approximation).\nThe GitHub repository can be found [here](https://github.com/einigl/ism-model-nn-approximation), the package [here](https://pypi.org/project/nnbma/) and the corresponding documentation [here](https://ism-model-nn-approximation.readthedocs.io/en/latest/?badge=latest).\nThe paper presenting this package is\n\n> \\[5\\] P. Palud, L. Einig, F. Le Petit, E. Bron, P. Chainais, J. Chanussot, J. Pety, P.-A. Thouvenin and ORION-B consortium - **Neural network-based emulation of interstellar medium models**, *Astronomy & Astrophysics*, 2023, 678, pp.A198. [doi:10.1051/0004-6361/202347074](https://doi.org/10.1051/0004-6361/202347074)\n\n## Installation and testing\n\nTo prepare and perform an inversion, we recommend installing the package.\nThe package can be installed with `pip`:\n\n```shell\npip install beetroots\n```\n\nor by cloning the repo.\nTo clone, install and test the package, run:\n\n```shell\ngit clone git@github.com:pierrePalud/beetroots.git\ncd beetroots\npoetry install # or poetry install -E notebook -E docs for extra dependencies\npoetry shell\npytest\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Beetroots (BayEsian infErence with spaTial Regularization of nOisy multi-line ObservaTion mapS)",
    "version": "1.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/pierrePalud/beetroots/issues",
        "Documentation": "https://beetroots.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/pierrePalud/beetroots",
        "Repository": "https://github.com/pierrePalud/beetroots"
    },
    "split_keywords": [
        "bayesian inference",
        " statistics",
        " artificial intelligence",
        " multi-line maps",
        " interstellar medium"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3406cfc0ec513b7579b98cd534166be517a84366ffa2dd70fb73fca4e13362d1",
                "md5": "44e595ca68238fda0851c03c83516eb9",
                "sha256": "34673afc773b8c604d020ead1981309704485e30fdfcc0dbc1665e1d81d092a9"
            },
            "downloads": -1,
            "filename": "beetroots-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "44e595ca68238fda0851c03c83516eb9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.9",
            "size": 171541,
            "upload_time": "2024-11-27T09:00:30",
            "upload_time_iso_8601": "2024-11-27T09:00:30.701558Z",
            "url": "https://files.pythonhosted.org/packages/34/06/cfc0ec513b7579b98cd534166be517a84366ffa2dd70fb73fca4e13362d1/beetroots-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0d666ce7618804360b1b2854257564d9aa77ae1e35eb660679fed9f50d9325da",
                "md5": "a666ec9071bc1d8e7f4b50284ef650fb",
                "sha256": "acfac93c9d655571b908bac54ad06103a8048dd9ca3f9005f18039531929efe9"
            },
            "downloads": -1,
            "filename": "beetroots-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a666ec9071bc1d8e7f4b50284ef650fb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.9",
            "size": 114505,
            "upload_time": "2024-11-27T09:00:32",
            "upload_time_iso_8601": "2024-11-27T09:00:32.870724Z",
            "url": "https://files.pythonhosted.org/packages/0d/66/6ce7618804360b1b2854257564d9aa77ae1e35eb660679fed9f50d9325da/beetroots-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-27 09:00:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pierrePalud",
    "github_project": "beetroots",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "beetroots"
}
        
Elapsed time: 0.39177s