behavior-eval


Namebehavior-eval JSON
Version 1.0.7 PyPI version JSON
download
home_pagehttps://github.com/embodied-agent-eval/behavior-eval
SummaryNone
upload_time2024-08-06 04:35:02
maintainerNone
docs_urlNone
authorstanford
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Installation and Usage Guide for `behavior-eval`

## Installation

### Step 1: Create a Conda Virtual Environment for `behavior-eval`
```
conda create -n behavior-eval python=3.8 -y
conda activate behavior-eval
```

### Step 2: Install `behavior-eval`

You can install from pip:
```
pip install behavior-eval
```

You can also install from source and use editable mode if you want to modify the source files:
```
git clone https://github.com/embodied-agent-eval/behavior-eval.git
cd behavior-eval
pip install -e .
```

### Step 3: Install `iGibson`

There might be issues during the installation of `iGibson`. 

To minimize and identify potential issues, we recommend:

1. Review the system requirements section of the [iGibson installation guide](https://stanfordvl.github.io/iGibson/installation.html).

2. **Install CMake Using Conda (do not use pip)**: 
   ```
   conda install cmake
   ```

3. **Install `iGibson`**: 
   We provided a script for automatically installing `iGibson`:
   ```
   python -m behavior_eval.utils.install_igibson_utils
   ```
   
   You can also do it on your own:
   ```
   git clone https://github.com/embodied-agent-eval/iGibson.git --recursive
   cd iGibson
   pip install -e .  # If you want to use editable mode
   # or
   pip install .  # Recommended
   ```

We've successfully tested the installation on Linux servers, Windows 10+, and Mac OS X.

### Step 4: Download Assets for `iGibson`
```
python -m behavior_eval.utils.download_utils
```

## Usage

To run `behavior-eval`, use the following command:
```
python -m behavior_eval.main
```

(By default, this will generate the prompts for action sequencing.)

### Parameters:

- `module`: Specifies the module to use. Options are:
  - `goal_interpretation`
  - `action_sequence`
  - `subgoal_decomposition`
  - `transition_modeling`
- `func`: Specifies the function to execute. Options are:
  - `evaluate_results`
  - `generate_prompts`
- `worker_num`: Number of workers for multiprocessing.
- `llm_response_dir`: Directory containing LLM responses (HELM outputs).
- `result_dir`: Directory to store results.

### Example Usage:

1. To generate prompts using the `action_sequence` module:
   ```
   python -m behavior_eval.main --module=action_sequence --func=generate_prompts
   ```

2. To evaluate results using the `action_sequence` module:
   ```
   python -m behavior_eval.main --module=action_sequence --func=evaluate_results --llm_response_dir=<your_llm_response_dir>
   ```

Replace `<your_llm_response_dir>` with the path to your LLM response directory.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/embodied-agent-eval/behavior-eval",
    "name": "behavior-eval",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "stanford",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/98/45/b2129bacaa2da0d99ef19ba7da7e0939bfcf1f0d35eada3b2dbaea62ee50/behavior_eval-1.0.7.tar.gz",
    "platform": null,
    "description": "# Installation and Usage Guide for `behavior-eval`\r\n\r\n## Installation\r\n\r\n### Step 1: Create a Conda Virtual Environment for `behavior-eval`\r\n```\r\nconda create -n behavior-eval python=3.8 -y\r\nconda activate behavior-eval\r\n```\r\n\r\n### Step 2: Install `behavior-eval`\r\n\r\nYou can install from pip:\r\n```\r\npip install behavior-eval\r\n```\r\n\r\nYou can also install from source and use editable mode if you want to modify the source files:\r\n```\r\ngit clone https://github.com/embodied-agent-eval/behavior-eval.git\r\ncd behavior-eval\r\npip install -e .\r\n```\r\n\r\n### Step 3: Install `iGibson`\r\n\r\nThere might be issues during the installation of `iGibson`. \r\n\r\nTo minimize and identify potential issues, we recommend:\r\n\r\n1. Review the system requirements section of the [iGibson installation guide](https://stanfordvl.github.io/iGibson/installation.html).\r\n\r\n2. **Install CMake Using Conda (do not use pip)**: \r\n   ```\r\n   conda install cmake\r\n   ```\r\n\r\n3. **Install `iGibson`**: \r\n   We provided a script for automatically installing `iGibson`:\r\n   ```\r\n   python -m behavior_eval.utils.install_igibson_utils\r\n   ```\r\n   \r\n   You can also do it on your own:\r\n   ```\r\n   git clone https://github.com/embodied-agent-eval/iGibson.git --recursive\r\n   cd iGibson\r\n   pip install -e .  # If you want to use editable mode\r\n   # or\r\n   pip install .  # Recommended\r\n   ```\r\n\r\nWe've successfully tested the installation on Linux servers, Windows 10+, and Mac OS X.\r\n\r\n### Step 4: Download Assets for `iGibson`\r\n```\r\npython -m behavior_eval.utils.download_utils\r\n```\r\n\r\n## Usage\r\n\r\nTo run `behavior-eval`, use the following command:\r\n```\r\npython -m behavior_eval.main\r\n```\r\n\r\n(By default, this will generate the prompts for action sequencing.)\r\n\r\n### Parameters:\r\n\r\n- `module`: Specifies the module to use. Options are:\r\n  - `goal_interpretation`\r\n  - `action_sequence`\r\n  - `subgoal_decomposition`\r\n  - `transition_modeling`\r\n- `func`: Specifies the function to execute. Options are:\r\n  - `evaluate_results`\r\n  - `generate_prompts`\r\n- `worker_num`: Number of workers for multiprocessing.\r\n- `llm_response_dir`: Directory containing LLM responses (HELM outputs).\r\n- `result_dir`: Directory to store results.\r\n\r\n### Example Usage:\r\n\r\n1. To generate prompts using the `action_sequence` module:\r\n   ```\r\n   python -m behavior_eval.main --module=action_sequence --func=generate_prompts\r\n   ```\r\n\r\n2. To evaluate results using the `action_sequence` module:\r\n   ```\r\n   python -m behavior_eval.main --module=action_sequence --func=evaluate_results --llm_response_dir=<your_llm_response_dir>\r\n   ```\r\n\r\nReplace `<your_llm_response_dir>` with the path to your LLM response directory.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "1.0.7",
    "project_urls": {
        "Homepage": "https://github.com/embodied-agent-eval/behavior-eval"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e97dad63ae82c1e23f3eeac755c8a659da4318807e3ba0c18a44a90446860746",
                "md5": "b8db3e81f5455b6cce16350216fd7ce9",
                "sha256": "401224771e2eb4d6d8e4c1d77fac593bcab812f1b1f256b50ac3e6b7fd6a600b"
            },
            "downloads": -1,
            "filename": "behavior_eval-1.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b8db3e81f5455b6cce16350216fd7ce9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 850800,
            "upload_time": "2024-08-06T04:35:00",
            "upload_time_iso_8601": "2024-08-06T04:35:00.773286Z",
            "url": "https://files.pythonhosted.org/packages/e9/7d/ad63ae82c1e23f3eeac755c8a659da4318807e3ba0c18a44a90446860746/behavior_eval-1.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9845b2129bacaa2da0d99ef19ba7da7e0939bfcf1f0d35eada3b2dbaea62ee50",
                "md5": "9a2c19198e4ae4f7c220094a08e2e699",
                "sha256": "65f6db5bb63320c2ae99632a9b05e638bf914ed9022587133c6ef0fc829b50ba"
            },
            "downloads": -1,
            "filename": "behavior_eval-1.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "9a2c19198e4ae4f7c220094a08e2e699",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 437658,
            "upload_time": "2024-08-06T04:35:02",
            "upload_time_iso_8601": "2024-08-06T04:35:02.712651Z",
            "url": "https://files.pythonhosted.org/packages/98/45/b2129bacaa2da0d99ef19ba7da7e0939bfcf1f0d35eada3b2dbaea62ee50/behavior_eval-1.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-06 04:35:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "embodied-agent-eval",
    "github_project": "behavior-eval",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "behavior-eval"
}
        
Elapsed time: 0.88519s