beir


Namebeir JSON
Version 2.0.0 PyPI version JSON
download
home_pagehttps://github.com/beir-cellar/beir
SummaryA Heterogeneous Benchmark for Information Retrieval
upload_time2023-07-21 22:54:22
maintainer
docs_urlNone
authorNandan Thakur
requires_python>=3.6
licenseApache License 2.0
keywords information retrieval transformer networks bert pytorch ir nlp deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
<img style="vertical-align:middle" width="450" height="180" src="https://raw.githubusercontent.com/benchmarkir/beir/main/images/color_logo_transparent_cropped.png" />
</h1>

<p align="center">
    <a href="https://github.com/beir-cellar/beir/releases">
        <img alt="GitHub release" src="https://img.shields.io/github/release/beir-cellar/beir.svg">
    </a>
    <a href="https://www.python.org/">
            <img alt="Build" src="https://img.shields.io/badge/Made%20with-Python-1f425f.svg?color=purple">
    </a>
    <a href="https://github.com/beir-cellar/beir/blob/master/LICENSE">
        <img alt="License" src="https://img.shields.io/github/license/beir-cellar/beir.svg?color=green">
    </a>
    <a href="https://colab.research.google.com/drive/1HfutiEhHMJLXiWGT8pcipxT5L2TpYEdt?usp=sharing">
        <img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
    </a>
    <a href="https://pepy.tech/project/beir">
        <img alt="Downloads" src="https://static.pepy.tech/personalized-badge/beir?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads">
    </a>
    <a href="https://github.com/beir-cellar/beir/">
        <img alt="Downloads" src="https://badges.frapsoft.com/os/v1/open-source.svg?v=103">
    </a>
</p>

<h4 align="center">
    <p>
        <a href="https://openreview.net/forum?id=wCu6T5xFjeJ">Paper</a> |
        <a href="#beers-installation">Installation</a> |
        <a href="#beers-quick-example">Quick Example</a> |
        <a href="#beers-available-datasets">Datasets</a> |
        <a href="https://github.com/beir-cellar/beir/wiki">Wiki</a> |
        <a href="https://huggingface.co/BeIR">Hugging Face</a>
    <p>
</h4>

<!-- > The development of BEIR benchmark is supported by: -->

<h3 align="center">
    <a href="http://www.ukp.tu-darmstadt.de"><img style="float: left; padding: 2px 7px 2px 7px;" width="220" height="100" src="./images/ukp.png" /></a>
    <a href="https://www.tu-darmstadt.de/"><img style="float: middle; padding: 2px 7px 2px 7px;" width="250" height="90" src="./images/tu-darmstadt.png" /></a>
    <a href="https://uwaterloo.ca"><img style="float: right; padding: 2px 7px 2px 7px;" width="320" height="100" src="./images/uwaterloo.png" /></a>
</h3>

<h3 align="center">
    <a href="https://huggingface.co/"><img style="float: middle; padding: 2px 7px 2px 7px;" width="400" height="80" src="./images/HF.png" /></a>
</h3>

## :beers: What is it?

**BEIR** is a **heterogeneous benchmark** containing diverse IR tasks. It also provides a **common and easy framework** for evaluation of your NLP-based retrieval models within the benchmark.

For **an overview**, checkout our **new wiki** page: [https://github.com/beir-cellar/beir/wiki](https://github.com/beir-cellar/beir/wiki).

For **models and datasets**, checkout out **Hugging Face (HF)** page: [https://huggingface.co/BeIR](https://huggingface.co/BeIR).

For **Leaderboard**, checkout out **Eval AI** page: [https://eval.ai/web/challenges/challenge-page/1897](https://eval.ai/web/challenges/challenge-page/1897).

For more information, checkout out our publications:

- [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://openreview.net/forum?id=wCu6T5xFjeJ) (NeurIPS 2021, Datasets and Benchmarks Track)
- [Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard](https://arxiv.org/abs/2306.07471) (Arxiv 2023)

## :beers: Installation

Install via pip:

```python
pip install beir
```

If you want to build from source, use:

```python
$ git clone https://github.com/beir-cellar/beir.git
$ cd beir
$ pip install -e .
```

Tested with python versions 3.6 and 3.7

## :beers: Features 

- Preprocess your own IR dataset or use one of the already-preprocessed 17 benchmark datasets
- Wide settings included, covers diverse benchmarks useful for both academia and industry
- Includes well-known retrieval architectures (lexical, dense, sparse and reranking-based)
- Add and evaluate your own model in a easy framework using different state-of-the-art evaluation metrics

## :beers: Quick Example

For other example codes, please refer to our **[Examples and Tutorials](https://github.com/beir-cellar/beir/wiki/Examples-and-tutorials)** Wiki page. 

```python
from beir import util, LoggingHandler
from beir.retrieval import models
from beir.datasets.data_loader import GenericDataLoader
from beir.retrieval.evaluation import EvaluateRetrieval
from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES

import logging
import pathlib, os

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

#### Download scifact.zip dataset and unzip the dataset
dataset = "scifact"
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
data_path = util.download_and_unzip(url, out_dir)

#### Provide the data_path where scifact has been downloaded and unzipped
corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split="test")

#### Load the SBERT model and retrieve using cosine-similarity
model = DRES(models.SentenceBERT("msmarco-distilbert-base-tas-b"), batch_size=16)
retriever = EvaluateRetrieval(model, score_function="dot") # or "cos_sim" for cosine similarity
results = retriever.retrieve(corpus, queries)

#### Evaluate your model with NDCG@k, MAP@K, Recall@K and Precision@K  where k = [1,3,5,10,100,1000] 
ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values)
```

## :beers: Available Datasets

Command to generate md5hash using Terminal:  ``md5sum filename.zip``.

You can view all datasets available **[here](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/)** or on **[Hugging Face](https://huggingface.co/BeIR)**.


| Dataset   | Website| BEIR-Name | Public? | Type | Queries  | Corpus | Rel D/Q | Down-load | md5 |
| -------- | -----| ---------| ------- | --------- | ----------- | ---------| ---------| :----------: | :------:|
| MSMARCO    | [Homepage](https://microsoft.github.io/msmarco/)| ``msmarco`` | ✅ | ``train``<br>``dev``<br>``test``|  6,980   |  8.84M     |    1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip) | ``444067daf65d982533ea17ebd59501e4`` |
| TREC-COVID |  [Homepage](https://ir.nist.gov/covidSubmit/index.html)| ``trec-covid``| ✅ | ``test``| 50|  171K| 493.5 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/trec-covid.zip) | ``ce62140cb23feb9becf6270d0d1fe6d1`` |
| NFCorpus   | [Homepage](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/) | ``nfcorpus`` | ✅ |``train``<br>``dev``<br>``test``|  323     |  3.6K     |  38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nfcorpus.zip) | ``a89dba18a62ef92f7d323ec890a0d38d`` |
| BioASQ     | [Homepage](http://bioasq.org) | ``bioasq``| ❌ | ``train``<br>``test`` | 500 |  14.91M    |  4.7 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#2-bioasq) |
| NQ         | [Homepage](https://ai.google.com/research/NaturalQuestions) | ``nq``| ✅ | ``train``<br>``test``| 3,452   |  2.68M  |  1.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip) | ``d4d3d2e48787a744b6f6e691ff534307`` |
| HotpotQA   | [Homepage](https://hotpotqa.github.io) | ``hotpotqa``| ✅ |``train``<br>``dev``<br>``test``|  7,405   |  5.23M  |  2.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip)  | ``f412724f78b0d91183a0e86805e16114`` |
| FiQA-2018  | [Homepage](https://sites.google.com/view/fiqa/) | ``fiqa`` | ✅ | ``train``<br>``dev``<br>``test``|  648     |  57K    |  2.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip)  | ``17918ed23cd04fb15047f73e6c3bd9d9`` |
| Signal-1M(RT) | [Homepage](https://research.signal-ai.com/datasets/signal1m-tweetir.html)| ``signal1m`` | ❌ | ``test``| 97   |  2.86M  |  19.6 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#4-signal-1m) |
| TREC-NEWS  | [Homepage](https://trec.nist.gov/data/news2019.html) | ``trec-news`` | ❌ | ``test``| 57    |  595K    |  19.6 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#1-trec-news) |
| Robust04 | [Homepage](https://trec.nist.gov/data/robust/04.guidelines.html) | ``robust04``| ❌ | ``test``| 249  |  528K  |  69.9 |  No  |  [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#3-robust04)  |
| ArguAna    | [Homepage](http://argumentation.bplaced.net/arguana/data) | ``arguana``| ✅ |``test`` | 1,406     |  8.67K    |  1.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/arguana.zip)  | ``8ad3e3c2a5867cdced806d6503f29b99`` |
| Touche-2020| [Homepage](https://webis.de/events/touche-20/shared-task-1.html) | ``webis-touche2020``| ✅ | ``test``| 49     |  382K    |  19.0 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip) | ``46f650ba5a527fc69e0a6521c5a23563`` |
| CQADupstack| [Homepage](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/) | ``cqadupstack``| ✅ | ``test``| 13,145 |  457K  |  1.4 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/cqadupstack.zip) | ``4e41456d7df8ee7760a7f866133bda78`` |
| Quora| [Homepage](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) | ``quora``| ✅ | ``dev``<br>``test``| 10,000     |  523K    |  1.6 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip) | ``18fb154900ba42a600f84b839c173167`` |
| DBPedia | [Homepage](https://github.com/iai-group/DBpedia-Entity/) | ``dbpedia-entity``| ✅ | ``dev``<br>``test``| 400    |  4.63M    |  38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/dbpedia-entity.zip) | ``c2a39eb420a3164af735795df012ac2c`` |
| SCIDOCS| [Homepage](https://allenai.org/data/scidocs) | ``scidocs``| ✅ | ``test``| 1,000     |  25K    |  4.9 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scidocs.zip) | ``38121350fc3a4d2f48850f6aff52e4a9`` |
| FEVER | [Homepage](http://fever.ai) | ``fever``| ✅ | ``train``<br>``dev``<br>``test``|  6,666     |  5.42M    |  1.2|  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fever.zip)  | ``5a818580227bfb4b35bb6fa46d9b6c03`` |
| Climate-FEVER| [Homepage](http://climatefever.ai) | ``climate-fever``| ✅ |``test``|  1,535     |  5.42M |  3.0 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/climate-fever.zip)  | ``8b66f0a9126c521bae2bde127b4dc99d`` |
| SciFact| [Homepage](https://github.com/allenai/scifact) | ``scifact``| ✅ | ``train``<br>``test``|  300     |  5K    |  1.1 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip)  | ``5f7d1de60b170fc8027bb7898e2efca1`` |


## :beers: Additional Information

We also provide a variety of additional information in our **[Wiki](https://github.com/beir-cellar/beir/wiki)** page. 
Please refer to these pages for the following:


### Quick Start

- [Installing BEIR](https://github.com/beir-cellar/beir/wiki/Installing-beir)
- [Examples and Tutorials](https://github.com/beir-cellar/beir/wiki/Examples-and-tutorials)

### Datasets

- [Datasets Available](https://github.com/beir-cellar/beir/wiki/Datasets-available)
- [Multilingual Datasets](https://github.com/beir-cellar/beir/wiki/Multilingual-datasets)
- [Load your Custom Dataset](https://github.com/beir-cellar/beir/wiki/Load-your-custom-dataset)

### Models 
- [Models Available](https://github.com/beir-cellar/beir/wiki/Models-available)
- [Evaluate your Custom Model](https://github.com/beir-cellar/beir/wiki/Evaluate-your-custom-model)

### Metrics

- [Metrics Available](https://github.com/beir-cellar/beir/wiki/Metrics-available)

### Miscellaneous

- [BEIR Leaderboard](https://github.com/beir-cellar/beir/wiki/Leaderboard)
- [Couse Material on IR](https://github.com/beir-cellar/beir/wiki/Course-material-on-ir)

## :beers: Disclaimer

Similar to Tensorflow [datasets](https://github.com/tensorflow/datasets) or Hugging Face's [datasets](https://github.com/huggingface/datasets) library, we just downloaded and prepared public datasets. We only distribute these datasets in a specific format, but we do not vouch for their quality or fairness, or claim that you have license to use the dataset. It remains the user's responsibility to determine whether you as a user have permission to use the dataset under the dataset's license and to cite the right owner of the dataset.

If you're a dataset owner and wish to update any part of it, or do not want your dataset to be included in this library, feel free to post an issue here or make a pull request!

If you're a dataset owner and wish to include your dataset or model in this library, feel free to post an issue here or make a pull request!

## :beers: Citing & Authors

If you find this repository helpful, feel free to cite our publication [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://arxiv.org/abs/2104.08663):

```
@inproceedings{
    thakur2021beir,
    title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models},
    author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych},
    booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
    year={2021},
    url={https://openreview.net/forum?id=wCu6T5xFjeJ}
}
```

If you use any baseline score from the BEIR leaderboard, feel free to cite our publication [Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard](https://arxiv.org/abs/2306.07471)
```
@misc{kamalloo2023resources,
      title={Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard}, 
      author={Ehsan Kamalloo and Nandan Thakur and Carlos Lassance and Xueguang Ma and Jheng-Hong Yang and Jimmy Lin},
      year={2023},
      eprint={2306.07471},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
```

The main contributors of this repository are:
- [Nandan Thakur](https://github.com/Nthakur20), Personal Website: [nandan-thakur.com](https://nandan-thakur.com)

Contact person: Nandan Thakur, [nandant@gmail.com](mailto:nandant@gmail.com)

Don't hesitate to send us an e-mail or report an issue, if something is broken (and it shouldn't be) or if you have further questions.

> This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.

## :beers: Collaboration

The BEIR Benchmark has been made possible due to a collaborative effort of the following universities and organizations:
- [UKP Lab, Technical University of Darmstadt](http://www.ukp.tu-darmstadt.de/)
- [University of Waterloo](https://uwaterloo.ca/)
- [Hugging Face](https://huggingface.co/)

## :beers: Contributors

Thanks go to all these wonderful collaborations for their contribution towards the BEIR benchmark:

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
  <tr>
    <td align="center"><a href="https://www.nandan-thakur.com"><img src="https://avatars.githubusercontent.com/u/30648040?v=4" width="100px;" alt=""/><br /><sub><b>Nandan Thakur</b></sub></a></td>
    <td align="center"><a href="https://www.nils-reimers.de/"><img src="https://avatars.githubusercontent.com/u/10706961?v=4" width="100px;" alt=""/><br /><sub><b>Nils Reimers</b></sub></a></td>
    <td align="center"><a href="https://www.informatik.tu-darmstadt.de/ukp/ukp_home/head_ukp/index.en.jsp"><img src="https://www.informatik.tu-darmstadt.de/media/ukp/pictures_1/people_1/Gurevych_Iryna_500x750_415x415.jpg" width="100px;" alt=""/><br /><sub><b>Iryna Gurevych</b></sub></a></td>
    <td align="center"><a href="https://cs.uwaterloo.ca/~jimmylin/"><img src="https://avatars.githubusercontent.com/u/313837?v=4" width="100px;" alt=""/><br /><sub><b>Jimmy Lin</b></sub></a></td>
    <td align="center"><a href="http://rueckle.net"><img src="https://i1.rgstatic.net/ii/profile.image/601126613295104-1520331161365_Q512/Andreas-Rueckle.jpg" width="100px;" alt=""/><br /><sub><b>Andreas Rücklé</b></sub></a></td>
    <td align="center"><a href="https://www.linkedin.com/in/abhesrivas"><img src="https://avatars.githubusercontent.com/u/19344566?v=4" width="100px;" alt=""/><br /><sub><b>Abhishek Srivastava</b></sub></a></td>
  </tr>
</table>

<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/beir-cellar/beir",
    "name": "beir",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "Information Retrieval Transformer Networks BERT PyTorch IR NLP deep learning",
    "author": "Nandan Thakur",
    "author_email": "nandant@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/52/b0/77c3640f506503d51cc10608c05d3101f6edff3db6a27f6c02de35458a90/beir-2.0.0.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">\n<img style=\"vertical-align:middle\" width=\"450\" height=\"180\" src=\"https://raw.githubusercontent.com/benchmarkir/beir/main/images/color_logo_transparent_cropped.png\" />\n</h1>\n\n<p align=\"center\">\n    <a href=\"https://github.com/beir-cellar/beir/releases\">\n        <img alt=\"GitHub release\" src=\"https://img.shields.io/github/release/beir-cellar/beir.svg\">\n    </a>\n    <a href=\"https://www.python.org/\">\n            <img alt=\"Build\" src=\"https://img.shields.io/badge/Made%20with-Python-1f425f.svg?color=purple\">\n    </a>\n    <a href=\"https://github.com/beir-cellar/beir/blob/master/LICENSE\">\n        <img alt=\"License\" src=\"https://img.shields.io/github/license/beir-cellar/beir.svg?color=green\">\n    </a>\n    <a href=\"https://colab.research.google.com/drive/1HfutiEhHMJLXiWGT8pcipxT5L2TpYEdt?usp=sharing\">\n        <img alt=\"Open In Colab\" src=\"https://colab.research.google.com/assets/colab-badge.svg\">\n    </a>\n    <a href=\"https://pepy.tech/project/beir\">\n        <img alt=\"Downloads\" src=\"https://static.pepy.tech/personalized-badge/beir?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads\">\n    </a>\n    <a href=\"https://github.com/beir-cellar/beir/\">\n        <img alt=\"Downloads\" src=\"https://badges.frapsoft.com/os/v1/open-source.svg?v=103\">\n    </a>\n</p>\n\n<h4 align=\"center\">\n    <p>\n        <a href=\"https://openreview.net/forum?id=wCu6T5xFjeJ\">Paper</a> |\n        <a href=\"#beers-installation\">Installation</a> |\n        <a href=\"#beers-quick-example\">Quick Example</a> |\n        <a href=\"#beers-available-datasets\">Datasets</a> |\n        <a href=\"https://github.com/beir-cellar/beir/wiki\">Wiki</a> |\n        <a href=\"https://huggingface.co/BeIR\">Hugging Face</a>\n    <p>\n</h4>\n\n<!-- > The development of BEIR benchmark is supported by: -->\n\n<h3 align=\"center\">\n    <a href=\"http://www.ukp.tu-darmstadt.de\"><img style=\"float: left; padding: 2px 7px 2px 7px;\" width=\"220\" height=\"100\" src=\"./images/ukp.png\" /></a>\n    <a href=\"https://www.tu-darmstadt.de/\"><img style=\"float: middle; padding: 2px 7px 2px 7px;\" width=\"250\" height=\"90\" src=\"./images/tu-darmstadt.png\" /></a>\n    <a href=\"https://uwaterloo.ca\"><img style=\"float: right; padding: 2px 7px 2px 7px;\" width=\"320\" height=\"100\" src=\"./images/uwaterloo.png\" /></a>\n</h3>\n\n<h3 align=\"center\">\n    <a href=\"https://huggingface.co/\"><img style=\"float: middle; padding: 2px 7px 2px 7px;\" width=\"400\" height=\"80\" src=\"./images/HF.png\" /></a>\n</h3>\n\n## :beers: What is it?\n\n**BEIR** is a **heterogeneous benchmark** containing diverse IR tasks. It also provides a **common and easy framework** for evaluation of your NLP-based retrieval models within the benchmark.\n\nFor **an overview**, checkout our **new wiki** page: [https://github.com/beir-cellar/beir/wiki](https://github.com/beir-cellar/beir/wiki).\n\nFor **models and datasets**, checkout out **Hugging Face (HF)** page: [https://huggingface.co/BeIR](https://huggingface.co/BeIR).\n\nFor **Leaderboard**, checkout out **Eval AI** page: [https://eval.ai/web/challenges/challenge-page/1897](https://eval.ai/web/challenges/challenge-page/1897).\n\nFor more information, checkout out our publications:\n\n- [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://openreview.net/forum?id=wCu6T5xFjeJ) (NeurIPS 2021, Datasets and Benchmarks Track)\n- [Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard](https://arxiv.org/abs/2306.07471) (Arxiv 2023)\n\n## :beers: Installation\n\nInstall via pip:\n\n```python\npip install beir\n```\n\nIf you want to build from source, use:\n\n```python\n$ git clone https://github.com/beir-cellar/beir.git\n$ cd beir\n$ pip install -e .\n```\n\nTested with python versions 3.6 and 3.7\n\n## :beers: Features \n\n- Preprocess your own IR dataset or use one of the already-preprocessed 17 benchmark datasets\n- Wide settings included, covers diverse benchmarks useful for both academia and industry\n- Includes well-known retrieval architectures (lexical, dense, sparse and reranking-based)\n- Add and evaluate your own model in a easy framework using different state-of-the-art evaluation metrics\n\n## :beers: Quick Example\n\nFor other example codes, please refer to our **[Examples and Tutorials](https://github.com/beir-cellar/beir/wiki/Examples-and-tutorials)** Wiki page. \n\n```python\nfrom beir import util, LoggingHandler\nfrom beir.retrieval import models\nfrom beir.datasets.data_loader import GenericDataLoader\nfrom beir.retrieval.evaluation import EvaluateRetrieval\nfrom beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES\n\nimport logging\nimport pathlib, os\n\n#### Just some code to print debug information to stdout\nlogging.basicConfig(format='%(asctime)s - %(message)s',\n                    datefmt='%Y-%m-%d %H:%M:%S',\n                    level=logging.INFO,\n                    handlers=[LoggingHandler()])\n#### /print debug information to stdout\n\n#### Download scifact.zip dataset and unzip the dataset\ndataset = \"scifact\"\nurl = \"https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip\".format(dataset)\nout_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), \"datasets\")\ndata_path = util.download_and_unzip(url, out_dir)\n\n#### Provide the data_path where scifact has been downloaded and unzipped\ncorpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split=\"test\")\n\n#### Load the SBERT model and retrieve using cosine-similarity\nmodel = DRES(models.SentenceBERT(\"msmarco-distilbert-base-tas-b\"), batch_size=16)\nretriever = EvaluateRetrieval(model, score_function=\"dot\") # or \"cos_sim\" for cosine similarity\nresults = retriever.retrieve(corpus, queries)\n\n#### Evaluate your model with NDCG@k, MAP@K, Recall@K and Precision@K  where k = [1,3,5,10,100,1000] \nndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values)\n```\n\n## :beers: Available Datasets\n\nCommand to generate md5hash using Terminal:  ``md5sum filename.zip``.\n\nYou can view all datasets available **[here](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/)** or on **[Hugging Face](https://huggingface.co/BeIR)**.\n\n\n| Dataset   | Website| BEIR-Name | Public? | Type | Queries  | Corpus | Rel D/Q | Down-load | md5 |\n| -------- | -----| ---------| ------- | --------- | ----------- | ---------| ---------| :----------: | :------:|\n| MSMARCO    | [Homepage](https://microsoft.github.io/msmarco/)| ``msmarco`` | \u2705 | ``train``<br>``dev``<br>``test``|  6,980   |  8.84M     |    1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip) | ``444067daf65d982533ea17ebd59501e4`` |\n| TREC-COVID |  [Homepage](https://ir.nist.gov/covidSubmit/index.html)| ``trec-covid``| \u2705 | ``test``| 50|  171K| 493.5 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/trec-covid.zip) | ``ce62140cb23feb9becf6270d0d1fe6d1`` |\n| NFCorpus   | [Homepage](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/) | ``nfcorpus`` | \u2705 |``train``<br>``dev``<br>``test``|  323     |  3.6K     |  38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nfcorpus.zip) | ``a89dba18a62ef92f7d323ec890a0d38d`` |\n| BioASQ     | [Homepage](http://bioasq.org) | ``bioasq``| \u274c | ``train``<br>``test`` | 500 |  14.91M    |  4.7 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#2-bioasq) |\n| NQ         | [Homepage](https://ai.google.com/research/NaturalQuestions) | ``nq``| \u2705 | ``train``<br>``test``| 3,452   |  2.68M  |  1.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip) | ``d4d3d2e48787a744b6f6e691ff534307`` |\n| HotpotQA   | [Homepage](https://hotpotqa.github.io) | ``hotpotqa``| \u2705 |``train``<br>``dev``<br>``test``|  7,405   |  5.23M  |  2.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip)  | ``f412724f78b0d91183a0e86805e16114`` |\n| FiQA-2018  | [Homepage](https://sites.google.com/view/fiqa/) | ``fiqa`` | \u2705 | ``train``<br>``dev``<br>``test``|  648     |  57K    |  2.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip)  | ``17918ed23cd04fb15047f73e6c3bd9d9`` |\n| Signal-1M(RT) | [Homepage](https://research.signal-ai.com/datasets/signal1m-tweetir.html)| ``signal1m`` | \u274c | ``test``| 97   |  2.86M  |  19.6 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#4-signal-1m) |\n| TREC-NEWS  | [Homepage](https://trec.nist.gov/data/news2019.html) | ``trec-news`` | \u274c | ``test``| 57    |  595K    |  19.6 | No | [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#1-trec-news) |\n| Robust04 | [Homepage](https://trec.nist.gov/data/robust/04.guidelines.html) | ``robust04``| \u274c | ``test``| 249  |  528K  |  69.9 |  No  |  [How to Reproduce?](https://github.com/beir-cellar/beir/blob/main/examples/dataset#3-robust04)  |\n| ArguAna    | [Homepage](http://argumentation.bplaced.net/arguana/data) | ``arguana``| \u2705 |``test`` | 1,406     |  8.67K    |  1.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/arguana.zip)  | ``8ad3e3c2a5867cdced806d6503f29b99`` |\n| Touche-2020| [Homepage](https://webis.de/events/touche-20/shared-task-1.html) | ``webis-touche2020``| \u2705 | ``test``| 49     |  382K    |  19.0 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip) | ``46f650ba5a527fc69e0a6521c5a23563`` |\n| CQADupstack| [Homepage](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/) | ``cqadupstack``| \u2705 | ``test``| 13,145 |  457K  |  1.4 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/cqadupstack.zip) | ``4e41456d7df8ee7760a7f866133bda78`` |\n| Quora| [Homepage](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) | ``quora``| \u2705 | ``dev``<br>``test``| 10,000     |  523K    |  1.6 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip) | ``18fb154900ba42a600f84b839c173167`` |\n| DBPedia | [Homepage](https://github.com/iai-group/DBpedia-Entity/) | ``dbpedia-entity``| \u2705 | ``dev``<br>``test``| 400    |  4.63M    |  38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/dbpedia-entity.zip) | ``c2a39eb420a3164af735795df012ac2c`` |\n| SCIDOCS| [Homepage](https://allenai.org/data/scidocs) | ``scidocs``| \u2705 | ``test``| 1,000     |  25K    |  4.9 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scidocs.zip) | ``38121350fc3a4d2f48850f6aff52e4a9`` |\n| FEVER | [Homepage](http://fever.ai) | ``fever``| \u2705 | ``train``<br>``dev``<br>``test``|  6,666     |  5.42M    |  1.2|  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fever.zip)  | ``5a818580227bfb4b35bb6fa46d9b6c03`` |\n| Climate-FEVER| [Homepage](http://climatefever.ai) | ``climate-fever``| \u2705 |``test``|  1,535     |  5.42M |  3.0 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/climate-fever.zip)  | ``8b66f0a9126c521bae2bde127b4dc99d`` |\n| SciFact| [Homepage](https://github.com/allenai/scifact) | ``scifact``| \u2705 | ``train``<br>``test``|  300     |  5K    |  1.1 |  [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip)  | ``5f7d1de60b170fc8027bb7898e2efca1`` |\n\n\n## :beers: Additional Information\n\nWe also provide a variety of additional information in our **[Wiki](https://github.com/beir-cellar/beir/wiki)** page. \nPlease refer to these pages for the following:\n\n\n### Quick Start\n\n- [Installing BEIR](https://github.com/beir-cellar/beir/wiki/Installing-beir)\n- [Examples and Tutorials](https://github.com/beir-cellar/beir/wiki/Examples-and-tutorials)\n\n### Datasets\n\n- [Datasets Available](https://github.com/beir-cellar/beir/wiki/Datasets-available)\n- [Multilingual Datasets](https://github.com/beir-cellar/beir/wiki/Multilingual-datasets)\n- [Load your Custom Dataset](https://github.com/beir-cellar/beir/wiki/Load-your-custom-dataset)\n\n### Models \n- [Models Available](https://github.com/beir-cellar/beir/wiki/Models-available)\n- [Evaluate your Custom Model](https://github.com/beir-cellar/beir/wiki/Evaluate-your-custom-model)\n\n### Metrics\n\n- [Metrics Available](https://github.com/beir-cellar/beir/wiki/Metrics-available)\n\n### Miscellaneous\n\n- [BEIR Leaderboard](https://github.com/beir-cellar/beir/wiki/Leaderboard)\n- [Couse Material on IR](https://github.com/beir-cellar/beir/wiki/Course-material-on-ir)\n\n## :beers: Disclaimer\n\nSimilar to Tensorflow [datasets](https://github.com/tensorflow/datasets) or Hugging Face's [datasets](https://github.com/huggingface/datasets) library, we just downloaded and prepared public datasets. We only distribute these datasets in a specific format, but we do not vouch for their quality or fairness, or claim that you have license to use the dataset. It remains the user's responsibility to determine whether you as a user have permission to use the dataset under the dataset's license and to cite the right owner of the dataset.\n\nIf you're a dataset owner and wish to update any part of it, or do not want your dataset to be included in this library, feel free to post an issue here or make a pull request!\n\nIf you're a dataset owner and wish to include your dataset or model in this library, feel free to post an issue here or make a pull request!\n\n## :beers: Citing & Authors\n\nIf you find this repository helpful, feel free to cite our publication [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://arxiv.org/abs/2104.08663):\n\n```\n@inproceedings{\n    thakur2021beir,\n    title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models},\n    author={Nandan Thakur and Nils Reimers and Andreas R{\\\"u}ckl{\\'e} and Abhishek Srivastava and Iryna Gurevych},\n    booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},\n    year={2021},\n    url={https://openreview.net/forum?id=wCu6T5xFjeJ}\n}\n```\n\nIf you use any baseline score from the BEIR leaderboard, feel free to cite our publication [Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard](https://arxiv.org/abs/2306.07471)\n```\n@misc{kamalloo2023resources,\n      title={Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard}, \n      author={Ehsan Kamalloo and Nandan Thakur and Carlos Lassance and Xueguang Ma and Jheng-Hong Yang and Jimmy Lin},\n      year={2023},\n      eprint={2306.07471},\n      archivePrefix={arXiv},\n      primaryClass={cs.IR}\n}\n```\n\nThe main contributors of this repository are:\n- [Nandan Thakur](https://github.com/Nthakur20), Personal Website: [nandan-thakur.com](https://nandan-thakur.com)\n\nContact person: Nandan Thakur, [nandant@gmail.com](mailto:nandant@gmail.com)\n\nDon't hesitate to send us an e-mail or report an issue, if something is broken (and it shouldn't be) or if you have further questions.\n\n> This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.\n\n## :beers: Collaboration\n\nThe BEIR Benchmark has been made possible due to a collaborative effort of the following universities and organizations:\n- [UKP Lab, Technical University of Darmstadt](http://www.ukp.tu-darmstadt.de/)\n- [University of Waterloo](https://uwaterloo.ca/)\n- [Hugging Face](https://huggingface.co/)\n\n## :beers: Contributors\n\nThanks go to all these wonderful collaborations for their contribution towards the BEIR benchmark:\n\n<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->\n<!-- prettier-ignore-start -->\n<!-- markdownlint-disable -->\n<table>\n  <tr>\n    <td align=\"center\"><a href=\"https://www.nandan-thakur.com\"><img src=\"https://avatars.githubusercontent.com/u/30648040?v=4\" width=\"100px;\" alt=\"\"/><br /><sub><b>Nandan Thakur</b></sub></a></td>\n    <td align=\"center\"><a href=\"https://www.nils-reimers.de/\"><img src=\"https://avatars.githubusercontent.com/u/10706961?v=4\" width=\"100px;\" alt=\"\"/><br /><sub><b>Nils Reimers</b></sub></a></td>\n    <td align=\"center\"><a href=\"https://www.informatik.tu-darmstadt.de/ukp/ukp_home/head_ukp/index.en.jsp\"><img src=\"https://www.informatik.tu-darmstadt.de/media/ukp/pictures_1/people_1/Gurevych_Iryna_500x750_415x415.jpg\" width=\"100px;\" alt=\"\"/><br /><sub><b>Iryna Gurevych</b></sub></a></td>\n    <td align=\"center\"><a href=\"https://cs.uwaterloo.ca/~jimmylin/\"><img src=\"https://avatars.githubusercontent.com/u/313837?v=4\" width=\"100px;\" alt=\"\"/><br /><sub><b>Jimmy Lin</b></sub></a></td>\n    <td align=\"center\"><a href=\"http://rueckle.net\"><img src=\"https://i1.rgstatic.net/ii/profile.image/601126613295104-1520331161365_Q512/Andreas-Rueckle.jpg\" width=\"100px;\" alt=\"\"/><br /><sub><b>Andreas R\u00fcckl\u00e9</b></sub></a></td>\n    <td align=\"center\"><a href=\"https://www.linkedin.com/in/abhesrivas\"><img src=\"https://avatars.githubusercontent.com/u/19344566?v=4\" width=\"100px;\" alt=\"\"/><br /><sub><b>Abhishek Srivastava</b></sub></a></td>\n  </tr>\n</table>\n\n<!-- markdownlint-restore -->\n<!-- prettier-ignore-end -->\n<!-- ALL-CONTRIBUTORS-LIST:END -->\n\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "A Heterogeneous Benchmark for Information Retrieval",
    "version": "2.0.0",
    "project_urls": {
        "Download": "https://github.com/beir-cellar/beir/archive/v2.0.0.zip",
        "Homepage": "https://github.com/beir-cellar/beir"
    },
    "split_keywords": [
        "information",
        "retrieval",
        "transformer",
        "networks",
        "bert",
        "pytorch",
        "ir",
        "nlp",
        "deep",
        "learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "52b077c3640f506503d51cc10608c05d3101f6edff3db6a27f6c02de35458a90",
                "md5": "a337d64949127fe2d20920a7441b1770",
                "sha256": "90aa9cf4507658f1f961136c5007f358e38f8fa5198a20a225e534a4c6bf842e"
            },
            "downloads": -1,
            "filename": "beir-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a337d64949127fe2d20920a7441b1770",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 53627,
            "upload_time": "2023-07-21T22:54:22",
            "upload_time_iso_8601": "2023-07-21T22:54:22.354594Z",
            "url": "https://files.pythonhosted.org/packages/52/b0/77c3640f506503d51cc10608c05d3101f6edff3db6a27f6c02de35458a90/beir-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-21 22:54:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "beir-cellar",
    "github_project": "beir",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "beir"
}
        
Elapsed time: 0.10847s