Name | ben-future-value JSON |
Version |
1.0.1
JSON |
| download |
home_page | None |
Summary | A package to assist in calculating future value |
upload_time | 2024-09-14 22:56:41 |
maintainer | None |
docs_url | None |
author | Ben Payton |
requires_python | None |
license | None |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Project Description
[Link_To_Wiki](https://github.com/Ben-Payton/ben_future_value/wiki)
This is a package for calculating future values and debt payoff in python.
Generally this is a small package so people can learn how to install and use packages.
It is meant to pair well with [matplotlib](https://matplotlib.org/) and [seaborn](https://seaborn.pydata.org/) they are listed as dependancies to ensure they are installed.
# How to install and use
In the command line type:
`pip install ben-future-value`
Once installed then use by importing at the top of your python code.
Below is an example of how you might generate a graph to compare outcomes of different interest rates.
```python
# Here we import packages, the first one is for making graphs
# the second one allows us to calculate our future values
# The third one allows us to make our graphs a little prettier with less code.
import matplotlib.pyplot as plt
import ben_future_value as bfv
import seaborn as sns
#These next lines makes our graph pretty later. You don't need them.
sns.set_context("notebook")
sns.set_style("darkgrid")
# These variables are for convenience of editing later.
NUMBER_OF_YEARS = 25
MATCHES_PER_YEAR = 4
PRINCIPLE_VALUE = 1000.00
AMMOUNT_CONTRIBUTED_PER_MATCH = 100.00
PERCENT_INCREASE_ONE = 5.0
PERCENT_INCREASE_TWO = 8.5
PERCENT_INCREASE_THREE = 12.0
# Here we use the ben_future_value package to calculate future values
high_yield_savings = bfv.Future_Value(
PRINCIPLE_VALUE,
PERCENT_INCREASE_ONE,
AMMOUNT_CONTRIBUTED_PER_MATCH,
NUMBER_OF_YEARS,
MATCHES_PER_YEAR
)
low_interest_investment = bfv.Future_Value(
PRINCIPLE_VALUE,
PERCENT_INCREASE_TWO,
AMMOUNT_CONTRIBUTED_PER_MATCH,
NUMBER_OF_YEARS,
MATCHES_PER_YEAR
)
average_interest_investment = bfv.Future_Value(
PRINCIPLE_VALUE,
PERCENT_INCREASE_THREE,
AMMOUNT_CONTRIBUTED_PER_MATCH,
NUMBER_OF_YEARS,
MATCHES_PER_YEAR
)
# Next we plot our future values
plt.plot(high_yield_savings.get_future_values())
plt.plot(low_interest_investment.get_future_values())
plt.plot(average_interest_investment.get_future_values())
plt.legend(
[
"High Yield Savings (" + str(PERCENT_INCREASE_ONE) + "%)",
"Low Interest Investment (" + str(PERCENT_INCREASE_TWO) + "%)",
"Average Interest Investment (" + str(PERCENT_INCREASE_THREE) + "%)"
]
)
# These next two lines add axis titles
plt.xlabel("Number of Matches")
plt.ylabel("Dollar Value")
# This shows out graph when we run out code
plt.show()
```

Raw data
{
"_id": null,
"home_page": null,
"name": "ben-future-value",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Ben Payton",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/ce/1c/eef70ca1b7c032635c3f91d312cd11c5cdeaa7dd6e2b3c80c1e5e4d8274d/ben_future_value-1.0.1.tar.gz",
"platform": null,
"description": "# Project Description\n\n[Link_To_Wiki](https://github.com/Ben-Payton/ben_future_value/wiki)\n\nThis is a package for calculating future values and debt payoff in python.\nGenerally this is a small package so people can learn how to install and use packages. \nIt is meant to pair well with [matplotlib](https://matplotlib.org/) and [seaborn](https://seaborn.pydata.org/) they are listed as dependancies to ensure they are installed.\n\n\n# How to install and use\n\nIn the command line type:\n\n`pip install ben-future-value`\n\nOnce installed then use by importing at the top of your python code.\n\nBelow is an example of how you might generate a graph to compare outcomes of different interest rates.\n\n```python\n# Here we import packages, the first one is for making graphs\n# the second one allows us to calculate our future values\n# The third one allows us to make our graphs a little prettier with less code. \nimport matplotlib.pyplot as plt\nimport ben_future_value as bfv\nimport seaborn as sns\n\n#These next lines makes our graph pretty later. You don't need them.\nsns.set_context(\"notebook\")\nsns.set_style(\"darkgrid\")\n\n\n# These variables are for convenience of editing later.\nNUMBER_OF_YEARS = 25\nMATCHES_PER_YEAR = 4\nPRINCIPLE_VALUE = 1000.00\nAMMOUNT_CONTRIBUTED_PER_MATCH = 100.00\n\nPERCENT_INCREASE_ONE = 5.0\nPERCENT_INCREASE_TWO = 8.5\nPERCENT_INCREASE_THREE = 12.0\n\n\n# Here we use the ben_future_value package to calculate future values\nhigh_yield_savings = bfv.Future_Value(\n PRINCIPLE_VALUE,\n PERCENT_INCREASE_ONE,\n AMMOUNT_CONTRIBUTED_PER_MATCH,\n NUMBER_OF_YEARS,\n MATCHES_PER_YEAR\n)\n\nlow_interest_investment = bfv.Future_Value(\n PRINCIPLE_VALUE,\n PERCENT_INCREASE_TWO,\n AMMOUNT_CONTRIBUTED_PER_MATCH,\n NUMBER_OF_YEARS,\n MATCHES_PER_YEAR\n)\n\naverage_interest_investment = bfv.Future_Value(\n PRINCIPLE_VALUE,\n PERCENT_INCREASE_THREE,\n AMMOUNT_CONTRIBUTED_PER_MATCH,\n NUMBER_OF_YEARS,\n MATCHES_PER_YEAR\n)\n\n\n# Next we plot our future values\nplt.plot(high_yield_savings.get_future_values())\nplt.plot(low_interest_investment.get_future_values())\nplt.plot(average_interest_investment.get_future_values())\n\nplt.legend(\n [\n \"High Yield Savings (\" + str(PERCENT_INCREASE_ONE) + \"%)\",\n \"Low Interest Investment (\" + str(PERCENT_INCREASE_TWO) + \"%)\",\n \"Average Interest Investment (\" + str(PERCENT_INCREASE_THREE) + \"%)\"\n ]\n)\n\n# These next two lines add axis titles\nplt.xlabel(\"Number of Matches\")\nplt.ylabel(\"Dollar Value\")\n# This shows out graph when we run out code\nplt.show()\n```\n\n",
"bugtrack_url": null,
"license": null,
"summary": "A package to assist in calculating future value",
"version": "1.0.1",
"project_urls": {
"Documentation": "https://github.com/Ben-Payton/ben_future_value/blob/main/README.md",
"Source": "https://github.com/Ben-Payton/ben_future_value"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ef5fc8adc5da418a19cc40d67cd3ec413c146ff642da7d4b209a94b4f5e149b7",
"md5": "7d9b09a393d6f8ee35bd5fc98e923335",
"sha256": "b0c438e2cc1a854e435d58615109821903201962a61a9ab0930a7e89d3c134e4"
},
"downloads": -1,
"filename": "ben_future_value-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7d9b09a393d6f8ee35bd5fc98e923335",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4840,
"upload_time": "2024-09-14T22:56:40",
"upload_time_iso_8601": "2024-09-14T22:56:40.553369Z",
"url": "https://files.pythonhosted.org/packages/ef/5f/c8adc5da418a19cc40d67cd3ec413c146ff642da7d4b209a94b4f5e149b7/ben_future_value-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ce1ceef70ca1b7c032635c3f91d312cd11c5cdeaa7dd6e2b3c80c1e5e4d8274d",
"md5": "8d611a811090a834aa68ce7e0c1da551",
"sha256": "859da0f765009005166160aa97e3aa7b8885bc09433c7a7f39b69843ea14af91"
},
"downloads": -1,
"filename": "ben_future_value-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "8d611a811090a834aa68ce7e0c1da551",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4619,
"upload_time": "2024-09-14T22:56:41",
"upload_time_iso_8601": "2024-09-14T22:56:41.967212Z",
"url": "https://files.pythonhosted.org/packages/ce/1c/eef70ca1b7c032635c3f91d312cd11c5cdeaa7dd6e2b3c80c1e5e4d8274d/ben_future_value-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-14 22:56:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Ben-Payton",
"github_project": "ben_future_value",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ben-future-value"
}