benGRN


NamebenGRN JSON
Version 1.2.4 PyPI version JSON
download
home_pageNone
Summarybenchmarking gene regulatory networks
upload_time2024-10-22 12:40:42
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT
keywords grn benchmark comp bio gene regulatory networks scprint scrnaseq
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # bengrn

[![codecov](https://codecov.io/gh/jkobject/benGRN/branch/main/graph/badge.svg?token=benGRN_token_here)](https://codecov.io/gh/jkobject/benGRN)
[![CI](https://github.com/jkobject/benGRN/actions/workflows/main.yml/badge.svg)](https://github.com/jkobject/benGRN/actions/workflows/main.yml)
[![PyPI version](https://badge.fury.io/py/benGRN.svg)](https://badge.fury.io/py/benGRN)
[![Downloads](https://pepy.tech/badge/benGRN)](https://pepy.tech/project/benGRN)
[![Downloads](https://pepy.tech/badge/benGRN/month)](https://pepy.tech/project/benGRN)
[![Downloads](https://pepy.tech/badge/benGRN/week)](https://pepy.tech/project/benGRN)
[![GitHub issues](https://img.shields.io/github/issues/jkobject/benGRN)](https://img.shields.io/github/issues/jkobject/benGRN)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![DOI](https://img.shields.io/badge/DOI-10.1101%2F2024.07.29.605556-blue)](https://doi.org/10.1101/2024.07.29.605556)

Benchmark your gene regulatory networks inference algorithm (from scRNAseq or bulk RNAseq dataset) with BenGRN

The package is supposed to work with [GRnnData](https://cantinilab.github.io/GRnnData/) and only uses biological ground truth datasets.

It can run Genie3 & pyscenic on your data as a comparison

It has 3 main different types of key ground truth data to compare your GRN to:

- Mc Calla et al.'s ChIP+Perturb ground truth
- omnipath's literature curated ground truth
- genome wide perturb seq 's dataset 

You can find the documentation [here](https://www.jkobject.com/benGRN/)

## Install it from PyPI

```bash
pip install bengrn
```

### Install it locally and run the notebooks:

```bash
git clone https://github.com/jkobject/benGRN.git
pip install -e benGRN
```

## Usage

```py
from bengrn import BenGRN
from bengrn import some_test_function

# a GRN in grnndata formart
grndata

BenGRN(grndata).do_tests()
#or
some_test_function(grndata)
```

see the notebooks in [docs](https://www.jkobject.com/benGRN/):

1. [omnipath](https://www.jkobject.com/benGRN/notebooks/bench_omni_genie3)
2. [genome wide perturb seq](https://www.jkobject.com/benGRN/notebooks/bench_perturbseq_genie3_transp/)
3. [Mc Calla](https://www.jkobject.com/benGRN/notebooks/bench_sroy_genie3_transp/)

## Development

Read the [CONTRIBUTING.md](CONTRIBUTING.md) file.

Awesome Benchmark of Gene Regulatory Networks created by @jkobject

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "benGRN",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "GRN, benchmark, comp bio, gene regulatory networks, scPRINT, scRNAseq",
    "author": null,
    "author_email": "jeremie kalfon <jkobject@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/57/ff/55102792c464ed93bde4a9097584b1ed723fdb8f41415ee7d66b892df195/bengrn-1.2.4.tar.gz",
    "platform": null,
    "description": "# bengrn\n\n[![codecov](https://codecov.io/gh/jkobject/benGRN/branch/main/graph/badge.svg?token=benGRN_token_here)](https://codecov.io/gh/jkobject/benGRN)\n[![CI](https://github.com/jkobject/benGRN/actions/workflows/main.yml/badge.svg)](https://github.com/jkobject/benGRN/actions/workflows/main.yml)\n[![PyPI version](https://badge.fury.io/py/benGRN.svg)](https://badge.fury.io/py/benGRN)\n[![Downloads](https://pepy.tech/badge/benGRN)](https://pepy.tech/project/benGRN)\n[![Downloads](https://pepy.tech/badge/benGRN/month)](https://pepy.tech/project/benGRN)\n[![Downloads](https://pepy.tech/badge/benGRN/week)](https://pepy.tech/project/benGRN)\n[![GitHub issues](https://img.shields.io/github/issues/jkobject/benGRN)](https://img.shields.io/github/issues/jkobject/benGRN)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![DOI](https://img.shields.io/badge/DOI-10.1101%2F2024.07.29.605556-blue)](https://doi.org/10.1101/2024.07.29.605556)\n\nBenchmark your gene regulatory networks inference algorithm (from scRNAseq or bulk RNAseq dataset) with BenGRN\n\nThe package is supposed to work with [GRnnData](https://cantinilab.github.io/GRnnData/) and only uses biological ground truth datasets.\n\nIt can run Genie3 & pyscenic on your data as a comparison\n\nIt has 3 main different types of key ground truth data to compare your GRN to:\n\n- Mc Calla et al.'s ChIP+Perturb ground truth\n- omnipath's literature curated ground truth\n- genome wide perturb seq 's dataset \n\nYou can find the documentation [here](https://www.jkobject.com/benGRN/)\n\n## Install it from PyPI\n\n```bash\npip install bengrn\n```\n\n### Install it locally and run the notebooks:\n\n```bash\ngit clone https://github.com/jkobject/benGRN.git\npip install -e benGRN\n```\n\n## Usage\n\n```py\nfrom bengrn import BenGRN\nfrom bengrn import some_test_function\n\n# a GRN in grnndata formart\ngrndata\n\nBenGRN(grndata).do_tests()\n#or\nsome_test_function(grndata)\n```\n\nsee the notebooks in [docs](https://www.jkobject.com/benGRN/):\n\n1. [omnipath](https://www.jkobject.com/benGRN/notebooks/bench_omni_genie3)\n2. [genome wide perturb seq](https://www.jkobject.com/benGRN/notebooks/bench_perturbseq_genie3_transp/)\n3. [Mc Calla](https://www.jkobject.com/benGRN/notebooks/bench_sroy_genie3_transp/)\n\n## Development\n\nRead the [CONTRIBUTING.md](CONTRIBUTING.md) file.\n\nAwesome Benchmark of Gene Regulatory Networks created by @jkobject\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "benchmarking gene regulatory networks",
    "version": "1.2.4",
    "project_urls": {
        "repository": "https://github.com/jkobject/benGRN"
    },
    "split_keywords": [
        "grn",
        " benchmark",
        " comp bio",
        " gene regulatory networks",
        " scprint",
        " scrnaseq"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5ac38f69cd7df6f93dcd62a4bc6a3b786792ca74f1055b142053d48d78947317",
                "md5": "8f603bb20b8a72f79135a269f9faf98e",
                "sha256": "135f683f575804fe9b0dddfcd995c42aa9599ef109d48f955a619ebd77375c46"
            },
            "downloads": -1,
            "filename": "bengrn-1.2.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8f603bb20b8a72f79135a269f9faf98e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 5243135,
            "upload_time": "2024-10-22T12:40:38",
            "upload_time_iso_8601": "2024-10-22T12:40:38.542134Z",
            "url": "https://files.pythonhosted.org/packages/5a/c3/8f69cd7df6f93dcd62a4bc6a3b786792ca74f1055b142053d48d78947317/bengrn-1.2.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "57ff55102792c464ed93bde4a9097584b1ed723fdb8f41415ee7d66b892df195",
                "md5": "82f01ed2b1f0845b6dcb9781a0810d7b",
                "sha256": "e9c616148d42914d52781351522835309f9ce7d9a706e6194face1f1497ccb5c"
            },
            "downloads": -1,
            "filename": "bengrn-1.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "82f01ed2b1f0845b6dcb9781a0810d7b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 23576635,
            "upload_time": "2024-10-22T12:40:42",
            "upload_time_iso_8601": "2024-10-22T12:40:42.269606Z",
            "url": "https://files.pythonhosted.org/packages/57/ff/55102792c464ed93bde4a9097584b1ed723fdb8f41415ee7d66b892df195/bengrn-1.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-22 12:40:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jkobject",
    "github_project": "benGRN",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "bengrn"
}
        
Elapsed time: 2.82234s