<div align="center">
<img src="https://github.com/redhat-performance/benchmark-runner/blob/main/media/benchmark_runner.png"><br>
</div>
-----------------
# Benchmark-Runner: Running benchmarks
[![Actions Status](https://github.com/redhat-performance/benchmark-runner/actions/workflows/Perf_Env_Build_Test_CI.yml/badge.svg)](https://github.com/redhat-performance/benchmark-runner/actions)
[![PyPI Latest Release](https://img.shields.io/pypi/v/benchmark-runner.svg)](https://pypi.org/project/benchmark-runner/)
[![Container Repository on Quay](https://quay.io/repository/projectquay/quay/status "Container Repository on Quay")](https://quay.io/repository/benchmark-runner/benchmark-runner?tab=tags)
[![Coverage Status](https://coveralls.io/repos/github/redhat-performance/benchmark-runner/badge.svg?branch=main)](https://coveralls.io/github/redhat-performance/benchmark-runner?branch=main&kill_cache=1)
[![Documentation Status](https://readthedocs.org/projects/benchmark-runner/badge/?version=latest)](https://benchmark-runner.readthedocs.io/en/latest/?badge=latest)
[![python](https://img.shields.io/pypi/pyversions/benchmark-runner.svg?color=%2334D058)](https://pypi.org/project/benchmark-runner)
[![License](https://img.shields.io/pypi/l/benchmark-runner.svg)](https://github.com/redhat-performance/benchmark-runner/blob/main/LICENSE)
## What is it?
**benchmark-runner** is a containerized Python lightweight and flexible framework for running benchmark workloads
on Kubernetes/OpenShift runtype kinds Pod, kata and VM.
This framework support the following embedded workloads:
* [hammerdb](https://hammerdb.com/): running hammerdb workload on the following databases: MSSQL, Mariadb, Postgresql in Pod, Kata or VM with [Configuration](benchmark_runner/common/template_operations/templates/hammerdb)
* [stressng](https://wiki.ubuntu.com/Kernel/Reference/stress-ng): running stressng workload in Pod, Kata or VM [Configuration](benchmark_runner/common/template_operations/templates/stressng)
* [uperf](http://uperf.org/): running uperf workload in Pod, Kata or VM with [Configuration](benchmark_runner/common/template_operations/templates/uperf)
* [vdbench](https://wiki.lustre.org/VDBench/): running vdbench workload in Pod, Kata or VM with [Configuration](benchmark_runner/common/template_operations/templates/vdbench)
* [bootstorm](https://en.wiktionary.org/wiki/boot_storm): calculate VMs boot load time [Configuration](benchmark_runner/common/template_operations/templates/bootstorm)
** For hammerdb mssql must run once [permission](https://github.com/redhat-performance/benchmark-runner/blob/main/benchmark_runner/common/ocp_resources/custom/template/02_mssql_patch_template.sh)
Benchmark-runner grafana dashboard example:
![](media/grafana.png)
Reference:
* The benchmark-runner package is located in [PyPi](https://pypi.org/project/benchmark-runner)
* The benchmark-runner container image is located in [Quay.io](https://quay.io/repository/benchmark-runner/benchmark-runner)
## Documentation
Documentation is available at [benchmark-runner.readthedocs.io](https://benchmark-runner.readthedocs.io/en/latest/)
![](media/docker2.png)
_**Table of Contents**_
<!-- TOC -->
- [Benchmark-Runner](#benchmark-runner)
- [Documentation](#documentation)
- [Run workload using Podman or Docker](#run-workload-using-podman-or-docker)
- [Run workload in Pod using Kubernetes or OpenShift](#run-workload-in-pod-using-kubernetes-or-openshift)
- [Grafana dashboards](#grafana-dashboards)
- [Inspect Prometheus Metrics](#inspect-prometheus-metrics)
- [How to develop in benchmark-runner](#how-to-develop-in-benchmark-runner)
<!-- /TOC -->
## Run workload using Podman or Docker
The following options may be passed via command line flags or set in the environment:
**mandatory:** KUBEADMIN_PASSWORD=$KUBEADMIN_PASSWORD
**mandatory:** $KUBECONFIG [ kubeconfig file path]
**mandatory:** WORKLOAD=$WORKLOAD
Choose one from the following list:
`['stressng_pod', 'stressng_vm', 'stressng_kata', 'uperf_pod', 'uperf_vm', 'uperf_kata', 'hammerdb_pod_mariadb', 'hammerdb_vm_mariadb', 'hammerdb_kata_mariadb', 'hammerdb_pod_mariadb_lso', 'hammerdb_vm_mariadb_lso', 'hammerdb_kata_mariadb_lso', 'hammerdb_pod_postgres', 'hammerdb_vm_postgres', 'hammerdb_kata_postgres', 'hammerdb_pod_postgres_lso', 'hammerdb_vm_postgres_lso', 'hammerdb_kata_postgres_lso', 'hammerdb_pod_mssql', 'hammerdb_vm_mssql', 'hammerdb_kata_mssql', 'hammerdb_pod_mssql_lso', 'hammerdb_vm_mssql_lso', 'hammerdb_kata_mssql_lso', 'vdbench_pod', 'vdbench_kata', 'vdbench_vm', 'clusterbuster', 'bootstorm_vm']`
** clusterbuster workloads: cpusoaker, files, fio, uperf. for more details [see](https://github.com/RobertKrawitz/OpenShift4-tools)
Not mandatory:
**auto:** NAMESPACE=benchmark-operator [ The default namespace is benchmark-operator ]
**auto:** ODF_PVC=True [ True=ODF PVC storage, False=Ephemeral storage, default True ]
**auto:** EXTRACT_PROMETHEUS_SNAPSHOT=True [ True=extract Prometheus snapshot into artifacts, false=don't, default True ]
**auto:** SYSTEM_METRICS=False [ True=collect metric, False=not collect metrics, default False ]
**auto:** RUNNER_PATH=/tmp [ The default work space is /tmp ]
**optional:** PIN_NODE_BENCHMARK_OPERATOR=$PIN_NODE_BENCHMARK_OPERATOR [node selector for benchmark operator pod]
**optional:** PIN_NODE1=$PIN_NODE1 [node1 selector for running the workload]
**optional:** PIN_NODE2=$PIN_NODE2 [node2 selector for running the workload, i.e. uperf server and client, hammerdb database and workload]
**optional:** ELASTICSEARCH=$ELASTICSEARCH [ elasticsearch service name]
**optional:** ELASTICSEARCH_PORT=$ELASTICSEARCH_PORT
**optional:** CLUSTER=$CLUSTER [ set CLUSTER='kubernetes' to run workload on a kubernetes cluster, default 'openshift' ]
**optional:scale** SCALE=$SCALE [For Vdbench/Bootstorm: Scale in each node]
**optional:scale** SCALE_NODES=$SCALE_NODES [For Vdbench/Bootstorm: Scale's node]
**optional:scale** REDIS=$REDIS [For Vdbench only: redis for scale synchronization]
**optional:** LSO_DISK_ID=$LSO_DISK_ID [LSO_DISK_ID='scsi-<replace_this_with_your_actual_disk_id>' For using LSO Operator in hammerdb]
**optional:** WORKER_DISK_IDS=$WORKER_DISK_IDS [WORKER_DISK_IDS For ODF/LSO workloads hammerdb/vdbench]
For example:
```sh
podman run --rm -e WORKLOAD="hammerdb_pod_mariadb" -e KUBEADMIN_PASSWORD="1234" -e PIN_NODE_BENCHMARK_OPERATOR="node_name-0" -e PIN_NODE1="node_name-1" -e PIN_NODE2="node_name-2" -e log_level=INFO -v /root/.kube/config:/root/.kube/config --privileged quay.io/benchmark-runner/benchmark-runner:latest
```
or
```sh
docker run --rm -e WORKLOAD="hammerdb_vm_mariadb" -e KUBEADMIN_PASSWORD="1234" -e PIN_NODE_BENCHMARK_OPERATOR="node_name-0" -e PIN_NODE1="node_name-1" -e PIN_NODE2="node_name-2" -e log_level=INFO -v /root/.kube/config:/root/.kube/config --privileged quay.io/benchmark-runner/benchmark-runner:latest
```
SAVE RUN ARTIFACTS LOCAL:
1. add `-e SAVE_ARTIFACTS_LOCAL='True'` or `--save-artifacts-local=true`
2. add `-v /tmp:/tmp`
3. git clone -b v1.0.3 https://github.com/cloud-bulldozer/benchmark-operator /tmp/benchmark-operator
### Run vdbench workload in Pod using OpenShift
![](media/benchmark-runner-demo.gif)
### Run vdbench workload in Pod using Kubernetes
![](media/benchmark-runner-k8s-demo.gif)
## Run workload in Pod using Kubernetes or OpenShift
[TBD]
## Grafana dashboards
There are 2 grafana dashboards templates:
1. [FuncCi dashboard](benchmark_runner/grafana/func/dashboard.json)
2. [PerfCi dashboard](benchmark_runner/grafana/perf/dashboard.json)
** PerfCi dashboard is generated automatically in [Build GitHub actions](https://github.com/redhat-performance/benchmark-runner/blob/main/.github/workflows/Perf_Env_Build_Test_CI.yml) from [main.libsonnet](benchmark_runner/grafana/perf/jsonnet/main.libsonnet)
** After importing json in grafana, you need to configure elasticsearch data source. (for more details: see [HOW_TO.md](HOW_TO.md))
## Inspect Prometheus Metrics
The CI jobs store snapshots of the Prometheus database for each run as part of the artifacts. Within the artifact directory is a Prometheus snapshot directory named:
```
promdb-YYYY_MM_DDTHH_mm_ss+0000_YYYY_MM_DDTHH_mm_ss+0000.tar
```
The timestamps are for the start and end of the metrics capture; they
are stored in UTC time (`+0000`). It is possible to run containerized
Prometheus on it to inspect the metrics. *Note that Prometheus
requires write access to its database, so it will actually write to
the snapshot.* So for example if you have downloaded artifacts for a
run named `hammerdb-vm-mariadb-2022-01-04-08-21-23` and the Prometheus
snapshot within is named
`promdb_2022_01_04T08_21_52+0000_2022_01_04T08_45_47+0000`, you could run as follows:
```
$ local_prometheus_snapshot=/hammerdb-vm-mariadb-2022-01-04-08-21-23/promdb_2022_01_04T08_21_52+0000_2022_01_04T08_45_47+0000
$ chmod -R g-s,a+rw "$local_prometheus_snapshot"
$ sudo podman run --rm -p 9090:9090 -uroot -v "$local_prometheus_snapshot:/prometheus" --privileged prom/prometheus --config.file=/etc/prometheus/prometheus.yml --storage.tsdb.path=/prometheus --storage.tsdb.retention.time=100000d --storage.tsdb.retention.size=1000PB
```
and point your browser at port 9090 on your local system, you can run queries against it, e.g.
```
sum(irate(node_cpu_seconds_total[2m])) by (mode,instance) > 0
```
It is important to use the `--storage.tsdb.retention.time` option to
Prometheus, as otherwise Prometheus may discard the data in the
snapshot. And note that you must set the time bounds on the
Prometheus query to fit the start and end times as recorded in the
name of the promdb snapshot.
## How to develop in benchmark-runner
see [HOW_TO.md](HOW_TO.md)
Raw data
{
"_id": null,
"home_page": "https://github.com/redhat-performance/benchmark-runner",
"name": "benchmark-runner",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Red Hat",
"author_email": "ebattat@redhat.com",
"download_url": "https://files.pythonhosted.org/packages/0d/6c/1a67f50ae5567ff3588cfbeea9361f5158a31a2371e3d989bfa28a38dd4e/benchmark_runner-1.0.709.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <img src=\"https://github.com/redhat-performance/benchmark-runner/blob/main/media/benchmark_runner.png\"><br>\n</div>\n\n-----------------\n\n# Benchmark-Runner: Running benchmarks\n[![Actions Status](https://github.com/redhat-performance/benchmark-runner/actions/workflows/Perf_Env_Build_Test_CI.yml/badge.svg)](https://github.com/redhat-performance/benchmark-runner/actions)\n[![PyPI Latest Release](https://img.shields.io/pypi/v/benchmark-runner.svg)](https://pypi.org/project/benchmark-runner/)\n[![Container Repository on Quay](https://quay.io/repository/projectquay/quay/status \"Container Repository on Quay\")](https://quay.io/repository/benchmark-runner/benchmark-runner?tab=tags)\n[![Coverage Status](https://coveralls.io/repos/github/redhat-performance/benchmark-runner/badge.svg?branch=main)](https://coveralls.io/github/redhat-performance/benchmark-runner?branch=main&kill_cache=1)\n[![Documentation Status](https://readthedocs.org/projects/benchmark-runner/badge/?version=latest)](https://benchmark-runner.readthedocs.io/en/latest/?badge=latest)\n[![python](https://img.shields.io/pypi/pyversions/benchmark-runner.svg?color=%2334D058)](https://pypi.org/project/benchmark-runner)\n[![License](https://img.shields.io/pypi/l/benchmark-runner.svg)](https://github.com/redhat-performance/benchmark-runner/blob/main/LICENSE)\n\n## What is it?\n\n**benchmark-runner** is a containerized Python lightweight and flexible framework for running benchmark workloads\non Kubernetes/OpenShift runtype kinds Pod, kata and VM.\n\nThis framework support the following embedded workloads:\n\n* [hammerdb](https://hammerdb.com/): running hammerdb workload on the following databases: MSSQL, Mariadb, Postgresql in Pod, Kata or VM with [Configuration](benchmark_runner/common/template_operations/templates/hammerdb)\n* [stressng](https://wiki.ubuntu.com/Kernel/Reference/stress-ng): running stressng workload in Pod, Kata or VM [Configuration](benchmark_runner/common/template_operations/templates/stressng)\n* [uperf](http://uperf.org/): running uperf workload in Pod, Kata or VM with [Configuration](benchmark_runner/common/template_operations/templates/uperf)\n* [vdbench](https://wiki.lustre.org/VDBench/): running vdbench workload in Pod, Kata or VM with [Configuration](benchmark_runner/common/template_operations/templates/vdbench)\n* [bootstorm](https://en.wiktionary.org/wiki/boot_storm): calculate VMs boot load time [Configuration](benchmark_runner/common/template_operations/templates/bootstorm)\n\n** For hammerdb mssql must run once [permission](https://github.com/redhat-performance/benchmark-runner/blob/main/benchmark_runner/common/ocp_resources/custom/template/02_mssql_patch_template.sh)\n\nBenchmark-runner grafana dashboard example:\n![](media/grafana.png)\n\nReference:\n* The benchmark-runner package is located in [PyPi](https://pypi.org/project/benchmark-runner)\n* The benchmark-runner container image is located in [Quay.io](https://quay.io/repository/benchmark-runner/benchmark-runner)\n\n## Documentation\nDocumentation is available at [benchmark-runner.readthedocs.io](https://benchmark-runner.readthedocs.io/en/latest/)\n\n![](media/docker2.png)\n\n_**Table of Contents**_\n\n<!-- TOC -->\n- [Benchmark-Runner](#benchmark-runner)\n - [Documentation](#documentation)\n - [Run workload using Podman or Docker](#run-workload-using-podman-or-docker)\n - [Run workload in Pod using Kubernetes or OpenShift](#run-workload-in-pod-using-kubernetes-or-openshift)\n - [Grafana dashboards](#grafana-dashboards)\n - [Inspect Prometheus Metrics](#inspect-prometheus-metrics)\n - [How to develop in benchmark-runner](#how-to-develop-in-benchmark-runner)\n\n<!-- /TOC -->\n\n## Run workload using Podman or Docker\n\nThe following options may be passed via command line flags or set in the environment:\n\n**mandatory:** KUBEADMIN_PASSWORD=$KUBEADMIN_PASSWORD\n\n**mandatory:** $KUBECONFIG [ kubeconfig file path]\n\n**mandatory:** WORKLOAD=$WORKLOAD\n\nChoose one from the following list:\n\n`['stressng_pod', 'stressng_vm', 'stressng_kata', 'uperf_pod', 'uperf_vm', 'uperf_kata', 'hammerdb_pod_mariadb', 'hammerdb_vm_mariadb', 'hammerdb_kata_mariadb', 'hammerdb_pod_mariadb_lso', 'hammerdb_vm_mariadb_lso', 'hammerdb_kata_mariadb_lso', 'hammerdb_pod_postgres', 'hammerdb_vm_postgres', 'hammerdb_kata_postgres', 'hammerdb_pod_postgres_lso', 'hammerdb_vm_postgres_lso', 'hammerdb_kata_postgres_lso', 'hammerdb_pod_mssql', 'hammerdb_vm_mssql', 'hammerdb_kata_mssql', 'hammerdb_pod_mssql_lso', 'hammerdb_vm_mssql_lso', 'hammerdb_kata_mssql_lso', 'vdbench_pod', 'vdbench_kata', 'vdbench_vm', 'clusterbuster', 'bootstorm_vm']`\n\n** clusterbuster workloads: cpusoaker, files, fio, uperf. for more details [see](https://github.com/RobertKrawitz/OpenShift4-tools)\n\nNot mandatory:\n\n**auto:** NAMESPACE=benchmark-operator [ The default namespace is benchmark-operator ]\n\n**auto:** ODF_PVC=True [ True=ODF PVC storage, False=Ephemeral storage, default True ]\n\n**auto:** EXTRACT_PROMETHEUS_SNAPSHOT=True [ True=extract Prometheus snapshot into artifacts, false=don't, default True ]\n\n**auto:** SYSTEM_METRICS=False [ True=collect metric, False=not collect metrics, default False ]\n\n**auto:** RUNNER_PATH=/tmp [ The default work space is /tmp ]\n\n**optional:** PIN_NODE_BENCHMARK_OPERATOR=$PIN_NODE_BENCHMARK_OPERATOR [node selector for benchmark operator pod]\n\n**optional:** PIN_NODE1=$PIN_NODE1 [node1 selector for running the workload]\n\n**optional:** PIN_NODE2=$PIN_NODE2 [node2 selector for running the workload, i.e. uperf server and client, hammerdb database and workload]\n\n**optional:** ELASTICSEARCH=$ELASTICSEARCH [ elasticsearch service name]\n\n**optional:** ELASTICSEARCH_PORT=$ELASTICSEARCH_PORT\n\n**optional:** CLUSTER=$CLUSTER [ set CLUSTER='kubernetes' to run workload on a kubernetes cluster, default 'openshift' ]\n\n**optional:scale** SCALE=$SCALE [For Vdbench/Bootstorm: Scale in each node]\n\n**optional:scale** SCALE_NODES=$SCALE_NODES [For Vdbench/Bootstorm: Scale's node]\n\n**optional:scale** REDIS=$REDIS [For Vdbench only: redis for scale synchronization]\n\n**optional:** LSO_DISK_ID=$LSO_DISK_ID [LSO_DISK_ID='scsi-<replace_this_with_your_actual_disk_id>' For using LSO Operator in hammerdb]\n\n**optional:** WORKER_DISK_IDS=$WORKER_DISK_IDS [WORKER_DISK_IDS For ODF/LSO workloads hammerdb/vdbench]\n\nFor example:\n\n```sh\npodman run --rm -e WORKLOAD=\"hammerdb_pod_mariadb\" -e KUBEADMIN_PASSWORD=\"1234\" -e PIN_NODE_BENCHMARK_OPERATOR=\"node_name-0\" -e PIN_NODE1=\"node_name-1\" -e PIN_NODE2=\"node_name-2\" -e log_level=INFO -v /root/.kube/config:/root/.kube/config --privileged quay.io/benchmark-runner/benchmark-runner:latest\n```\nor\n```sh\ndocker run --rm -e WORKLOAD=\"hammerdb_vm_mariadb\" -e KUBEADMIN_PASSWORD=\"1234\" -e PIN_NODE_BENCHMARK_OPERATOR=\"node_name-0\" -e PIN_NODE1=\"node_name-1\" -e PIN_NODE2=\"node_name-2\" -e log_level=INFO -v /root/.kube/config:/root/.kube/config --privileged quay.io/benchmark-runner/benchmark-runner:latest\n```\n\nSAVE RUN ARTIFACTS LOCAL:\n1. add `-e SAVE_ARTIFACTS_LOCAL='True'` or `--save-artifacts-local=true`\n2. add `-v /tmp:/tmp`\n3. git clone -b v1.0.3 https://github.com/cloud-bulldozer/benchmark-operator /tmp/benchmark-operator\n\n### Run vdbench workload in Pod using OpenShift\n![](media/benchmark-runner-demo.gif)\n\n### Run vdbench workload in Pod using Kubernetes\n![](media/benchmark-runner-k8s-demo.gif)\n\n## Run workload in Pod using Kubernetes or OpenShift\n\n[TBD]\n\n## Grafana dashboards\n\nThere are 2 grafana dashboards templates:\n1. [FuncCi dashboard](benchmark_runner/grafana/func/dashboard.json)\n2. [PerfCi dashboard](benchmark_runner/grafana/perf/dashboard.json)\n** PerfCi dashboard is generated automatically in [Build GitHub actions](https://github.com/redhat-performance/benchmark-runner/blob/main/.github/workflows/Perf_Env_Build_Test_CI.yml) from [main.libsonnet](benchmark_runner/grafana/perf/jsonnet/main.libsonnet)\n\n** After importing json in grafana, you need to configure elasticsearch data source. (for more details: see [HOW_TO.md](HOW_TO.md))\n\n## Inspect Prometheus Metrics\n\nThe CI jobs store snapshots of the Prometheus database for each run as part of the artifacts. Within the artifact directory is a Prometheus snapshot directory named:\n\n```\npromdb-YYYY_MM_DDTHH_mm_ss+0000_YYYY_MM_DDTHH_mm_ss+0000.tar\n```\n\nThe timestamps are for the start and end of the metrics capture; they\nare stored in UTC time (`+0000`). It is possible to run containerized\nPrometheus on it to inspect the metrics. *Note that Prometheus\nrequires write access to its database, so it will actually write to\nthe snapshot.* So for example if you have downloaded artifacts for a\nrun named `hammerdb-vm-mariadb-2022-01-04-08-21-23` and the Prometheus\nsnapshot within is named\n`promdb_2022_01_04T08_21_52+0000_2022_01_04T08_45_47+0000`, you could run as follows:\n\n```\n$ local_prometheus_snapshot=/hammerdb-vm-mariadb-2022-01-04-08-21-23/promdb_2022_01_04T08_21_52+0000_2022_01_04T08_45_47+0000\n$ chmod -R g-s,a+rw \"$local_prometheus_snapshot\"\n$ sudo podman run --rm -p 9090:9090 -uroot -v \"$local_prometheus_snapshot:/prometheus\" --privileged prom/prometheus --config.file=/etc/prometheus/prometheus.yml --storage.tsdb.path=/prometheus --storage.tsdb.retention.time=100000d --storage.tsdb.retention.size=1000PB\n```\n\nand point your browser at port 9090 on your local system, you can run queries against it, e.g.\n\n```\nsum(irate(node_cpu_seconds_total[2m])) by (mode,instance) > 0\n```\n\nIt is important to use the `--storage.tsdb.retention.time` option to\nPrometheus, as otherwise Prometheus may discard the data in the\nsnapshot. And note that you must set the time bounds on the\nPrometheus query to fit the start and end times as recorded in the\nname of the promdb snapshot.\n\n## How to develop in benchmark-runner\n\nsee [HOW_TO.md](HOW_TO.md)\n",
"bugtrack_url": null,
"license": "Apache License 2.0",
"summary": "Benchmark Runner Tool",
"version": "1.0.709",
"project_urls": {
"Homepage": "https://github.com/redhat-performance/benchmark-runner"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3d595ffc0c5cf1b90ce067ea88466752754ad502091d97e3d1e2c88234619be0",
"md5": "319efa6ae169181d27cb9248ab7280ac",
"sha256": "be5c54bc038e8eaf23a35a20666cc6f7e300f040cc30c1b2f90c06eb2a6a64e6"
},
"downloads": -1,
"filename": "benchmark_runner-1.0.709-py3-none-any.whl",
"has_sig": false,
"md5_digest": "319efa6ae169181d27cb9248ab7280ac",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 211827,
"upload_time": "2024-12-18T13:24:31",
"upload_time_iso_8601": "2024-12-18T13:24:31.610436Z",
"url": "https://files.pythonhosted.org/packages/3d/59/5ffc0c5cf1b90ce067ea88466752754ad502091d97e3d1e2c88234619be0/benchmark_runner-1.0.709-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0d6c1a67f50ae5567ff3588cfbeea9361f5158a31a2371e3d989bfa28a38dd4e",
"md5": "b94e42772af9f3554def583bb74a1ed0",
"sha256": "9a3daf60c6c2f21eb5b11dc7d03777243cac8edffd869d667898dfd26b51994e"
},
"downloads": -1,
"filename": "benchmark_runner-1.0.709.tar.gz",
"has_sig": false,
"md5_digest": "b94e42772af9f3554def583bb74a1ed0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 146302,
"upload_time": "2024-12-18T13:24:34",
"upload_time_iso_8601": "2024-12-18T13:24:34.921202Z",
"url": "https://files.pythonhosted.org/packages/0d/6c/1a67f50ae5567ff3588cfbeea9361f5158a31a2371e3d989bfa28a38dd4e/benchmark_runner-1.0.709.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 13:24:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "redhat-performance",
"github_project": "benchmark-runner",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [
{
"name": "attrs",
"specs": [
[
"==",
"21.4.0"
]
]
},
{
"name": "azure",
"specs": [
[
"==",
"4.0.0"
]
]
},
{
"name": "boto3",
"specs": [
[
"==",
"1.33.13"
]
]
},
{
"name": "botocore",
"specs": [
[
"==",
"1.33.13"
]
]
},
{
"name": "cryptography",
"specs": [
[
"==",
"43.0.1"
]
]
},
{
"name": "elasticsearch",
"specs": [
[
"==",
"7.16.1"
]
]
},
{
"name": "elasticsearch-dsl",
"specs": [
[
"==",
"7.4.0"
]
]
},
{
"name": "google-api-python-client",
"specs": [
[
"==",
"2.135.0"
]
]
},
{
"name": "google-auth",
"specs": [
[
"==",
"2.30.0"
]
]
},
{
"name": "google-auth-httplib2",
"specs": [
[
"==",
"0.2.0"
]
]
},
{
"name": "google-auth-oauthlib",
"specs": [
[
"==",
"1.2.0"
]
]
},
{
"name": "ipywidgets",
"specs": [
[
"==",
"8.0.6"
]
]
},
{
"name": "jinja2",
"specs": [
[
"==",
"3.1.4"
]
]
},
{
"name": "myst-parser",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "openshift-client",
"specs": [
[
"==",
"1.0.17"
]
]
},
{
"name": "pandas",
"specs": []
},
{
"name": "paramiko",
"specs": [
[
"==",
"3.4.0"
]
]
},
{
"name": "prometheus-api-client",
"specs": [
[
"==",
"0.5.1"
]
]
},
{
"name": "PyGitHub",
"specs": [
[
"==",
"1.55"
]
]
},
{
"name": "PyYAML",
"specs": [
[
"==",
"6.0.1"
]
]
},
{
"name": "setuptools",
"specs": []
},
{
"name": "sphinx",
"specs": [
[
"==",
"5.0.0"
]
]
},
{
"name": "sphinx_rtd_theme",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "tenacity",
"specs": [
[
"==",
"8.0.1"
]
]
},
{
"name": "tqdm",
"specs": [
[
"==",
"4.66.3"
]
]
},
{
"name": "typeguard",
"specs": [
[
"==",
"2.12.1"
]
]
},
{
"name": "typing",
"specs": [
[
"==",
"3.7.4.3"
]
]
}
],
"lcname": "benchmark-runner"
}