bexvar


Namebexvar JSON
Version 1.1.1 PyPI version JSON
download
home_pagehttps://github.com/JohannesBuchner/bexvar
SummaryBayesian excess variance for Poisson data time series with backgrounds.
upload_time2024-02-08 09:38:54
maintainer
docs_urlNone
authorJohannes Buchner
requires_python>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*
licenseAffero GNU General Public License v3
keywords bexvar
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            bexvar
==================

Bayesian excess variance for Poisson data time series with backgrounds.
Excess variance is over-dispersion beyond the observational poisson noise,
caused by an astrophysical source.

* `Introduction <#introduction>`_
* `Method <#method>`_
* `Tutorial <#tutorial>`_
* `Output plot <#visualising-the-results>`_ and files

Introduction
-------------------

In high-energy astrophysics, the analysis of photon count time series
is common. Examples include the detection of gamma-ray bursts,
periodicity searches in pulsars, or the characterisation of
damped random walk-like accretion in the X-ray emission of
active galactic nuclei.

Methods
--------------

paper: https://arxiv.org/abs/2106.14529

This repository provides new statistical analysis methods for light curves.
They can deal with

* very low count statistics (0 or a few counts per time bin)
* (potentially variable) instrument sensitivity
* (potentially variable) backgrounds, measured simultaneously in an 'off' region.

The tools can read eROSITA light curves. Contributions that can read other
file formats are welcome.

The `bexvar_ero.py` tool computes posterior distributions on the Bayesian excess variance,
and source count rate.

`quick_ero.py` computes simpler statistics, including Bayesian blocks,
fraction variance, the normalised excess variance, and 
the amplitude maximum deviation statistics.

Licence
--------
AGPLv3 (see COPYING file). Contact me if you need a different licence.

Install
--------

.. image:: https://img.shields.io/pypi/v/bexvar.svg
    :target: https://pypi.python.org/pypi/bexvar

.. image:: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml/badge.svg
    :target: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml

.. image:: https://img.shields.io/badge/astroph.HE-arXiv%3A2106.14529-B31B1B.svg
    :target: https://arxiv.org/abs/2106.14529
    :alt: Publication



Install as usual::

	$ pip3 install bexvar

This also installs the required `ultranest <https://johannesbuchner.github.io/UltraNest/>`_
python package.


Example
----------

Run with::

	$ bexvar_ero.py 020_LightCurve_00001.fits

Run simpler variability analyses with::

	$ quick_ero.py 020_LightCurve_*.fits.gz


Contributing
--------------

Contributions are welcome. Please open pull requests
with code contributions, or issues for bugs and questions.

Contributors include:

* Johannes Buchner
* David Bogensberger

If you use this software, please cite this paper: https://arxiv.org/abs/2106.14529


Changelog
----------

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JohannesBuchner/bexvar",
    "name": "bexvar",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
    "maintainer_email": "",
    "keywords": "bexvar",
    "author": "Johannes Buchner",
    "author_email": "johannes.buchner.acad@gmx.com",
    "download_url": "https://files.pythonhosted.org/packages/22/08/af06ca041bb29484c2694792559f1f70384d071f92508b5ed50bad93a87b/bexvar-1.1.1.tar.gz",
    "platform": null,
    "description": "bexvar\n==================\n\nBayesian excess variance for Poisson data time series with backgrounds.\nExcess variance is over-dispersion beyond the observational poisson noise,\ncaused by an astrophysical source.\n\n* `Introduction <#introduction>`_\n* `Method <#method>`_\n* `Tutorial <#tutorial>`_\n* `Output plot <#visualising-the-results>`_ and files\n\nIntroduction\n-------------------\n\nIn high-energy astrophysics, the analysis of photon count time series\nis common. Examples include the detection of gamma-ray bursts,\nperiodicity searches in pulsars, or the characterisation of\ndamped random walk-like accretion in the X-ray emission of\nactive galactic nuclei.\n\nMethods\n--------------\n\npaper: https://arxiv.org/abs/2106.14529\n\nThis repository provides new statistical analysis methods for light curves.\nThey can deal with\n\n* very low count statistics (0 or a few counts per time bin)\n* (potentially variable) instrument sensitivity\n* (potentially variable) backgrounds, measured simultaneously in an 'off' region.\n\nThe tools can read eROSITA light curves. Contributions that can read other\nfile formats are welcome.\n\nThe `bexvar_ero.py` tool computes posterior distributions on the Bayesian excess variance,\nand source count rate.\n\n`quick_ero.py` computes simpler statistics, including Bayesian blocks,\nfraction variance, the normalised excess variance, and \nthe amplitude maximum deviation statistics.\n\nLicence\n--------\nAGPLv3 (see COPYING file). Contact me if you need a different licence.\n\nInstall\n--------\n\n.. image:: https://img.shields.io/pypi/v/bexvar.svg\n    :target: https://pypi.python.org/pypi/bexvar\n\n.. image:: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml/badge.svg\n    :target: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml\n\n.. image:: https://img.shields.io/badge/astroph.HE-arXiv%3A2106.14529-B31B1B.svg\n    :target: https://arxiv.org/abs/2106.14529\n    :alt: Publication\n\n\n\nInstall as usual::\n\n\t$ pip3 install bexvar\n\nThis also installs the required `ultranest <https://johannesbuchner.github.io/UltraNest/>`_\npython package.\n\n\nExample\n----------\n\nRun with::\n\n\t$ bexvar_ero.py 020_LightCurve_00001.fits\n\nRun simpler variability analyses with::\n\n\t$ quick_ero.py 020_LightCurve_*.fits.gz\n\n\nContributing\n--------------\n\nContributions are welcome. Please open pull requests\nwith code contributions, or issues for bugs and questions.\n\nContributors include:\n\n* Johannes Buchner\n* David Bogensberger\n\nIf you use this software, please cite this paper: https://arxiv.org/abs/2106.14529\n\n\nChangelog\n----------\n",
    "bugtrack_url": null,
    "license": "Affero GNU General Public License v3",
    "summary": "Bayesian excess variance for Poisson data time series with backgrounds.",
    "version": "1.1.1",
    "project_urls": {
        "Homepage": "https://github.com/JohannesBuchner/bexvar"
    },
    "split_keywords": [
        "bexvar"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2208af06ca041bb29484c2694792559f1f70384d071f92508b5ed50bad93a87b",
                "md5": "f93d2e98d2e8fd82e9f33282a0364325",
                "sha256": "7832274bb03696b70feedbfd2f2d6db192b82c13d26bae750be22cc82882984c"
            },
            "downloads": -1,
            "filename": "bexvar-1.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f93d2e98d2e8fd82e9f33282a0364325",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
            "size": 19496,
            "upload_time": "2024-02-08T09:38:54",
            "upload_time_iso_8601": "2024-02-08T09:38:54.303105Z",
            "url": "https://files.pythonhosted.org/packages/22/08/af06ca041bb29484c2694792559f1f70384d071f92508b5ed50bad93a87b/bexvar-1.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-08 09:38:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JohannesBuchner",
    "github_project": "bexvar",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": true,
    "lcname": "bexvar"
}
        
Elapsed time: 0.43074s