bexvar
==================
Bayesian excess variance for Poisson data time series with backgrounds.
Excess variance is over-dispersion beyond the observational poisson noise,
caused by an astrophysical source.
* `Introduction <#introduction>`_
* `Method <#method>`_
* `Tutorial <#tutorial>`_
* `Output plot <#visualising-the-results>`_ and files
Introduction
-------------------
In high-energy astrophysics, the analysis of photon count time series
is common. Examples include the detection of gamma-ray bursts,
periodicity searches in pulsars, or the characterisation of
damped random walk-like accretion in the X-ray emission of
active galactic nuclei.
Methods
--------------
paper: https://arxiv.org/abs/2106.14529
This repository provides new statistical analysis methods for light curves.
They can deal with
* very low count statistics (0 or a few counts per time bin)
* (potentially variable) instrument sensitivity
* (potentially variable) backgrounds, measured simultaneously in an 'off' region.
The tools can read eROSITA light curves. Contributions that can read other
file formats are welcome.
The `bexvar_ero.py` tool computes posterior distributions on the Bayesian excess variance,
and source count rate.
`quick_ero.py` computes simpler statistics, including Bayesian blocks,
fraction variance, the normalised excess variance, and
the amplitude maximum deviation statistics.
Licence
--------
AGPLv3 (see COPYING file). Contact me if you need a different licence.
Install
--------
.. image:: https://img.shields.io/pypi/v/bexvar.svg
:target: https://pypi.python.org/pypi/bexvar
.. image:: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml/badge.svg
:target: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml
.. image:: https://img.shields.io/badge/astroph.HE-arXiv%3A2106.14529-B31B1B.svg
:target: https://arxiv.org/abs/2106.14529
:alt: Publication
Install as usual::
$ pip3 install bexvar
This also installs the required `ultranest <https://johannesbuchner.github.io/UltraNest/>`_
python package.
Example
----------
Run with::
$ bexvar_ero.py 020_LightCurve_00001.fits
Run simpler variability analyses with::
$ quick_ero.py 020_LightCurve_*.fits.gz
Contributing
--------------
Contributions are welcome. Please open pull requests
with code contributions, or issues for bugs and questions.
Contributors include:
* Johannes Buchner
* David Bogensberger
If you use this software, please cite this paper: https://arxiv.org/abs/2106.14529
Changelog
----------
Raw data
{
"_id": null,
"home_page": "https://github.com/JohannesBuchner/bexvar",
"name": "bexvar",
"maintainer": "",
"docs_url": null,
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"maintainer_email": "",
"keywords": "bexvar",
"author": "Johannes Buchner",
"author_email": "johannes.buchner.acad@gmx.com",
"download_url": "https://files.pythonhosted.org/packages/22/08/af06ca041bb29484c2694792559f1f70384d071f92508b5ed50bad93a87b/bexvar-1.1.1.tar.gz",
"platform": null,
"description": "bexvar\n==================\n\nBayesian excess variance for Poisson data time series with backgrounds.\nExcess variance is over-dispersion beyond the observational poisson noise,\ncaused by an astrophysical source.\n\n* `Introduction <#introduction>`_\n* `Method <#method>`_\n* `Tutorial <#tutorial>`_\n* `Output plot <#visualising-the-results>`_ and files\n\nIntroduction\n-------------------\n\nIn high-energy astrophysics, the analysis of photon count time series\nis common. Examples include the detection of gamma-ray bursts,\nperiodicity searches in pulsars, or the characterisation of\ndamped random walk-like accretion in the X-ray emission of\nactive galactic nuclei.\n\nMethods\n--------------\n\npaper: https://arxiv.org/abs/2106.14529\n\nThis repository provides new statistical analysis methods for light curves.\nThey can deal with\n\n* very low count statistics (0 or a few counts per time bin)\n* (potentially variable) instrument sensitivity\n* (potentially variable) backgrounds, measured simultaneously in an 'off' region.\n\nThe tools can read eROSITA light curves. Contributions that can read other\nfile formats are welcome.\n\nThe `bexvar_ero.py` tool computes posterior distributions on the Bayesian excess variance,\nand source count rate.\n\n`quick_ero.py` computes simpler statistics, including Bayesian blocks,\nfraction variance, the normalised excess variance, and \nthe amplitude maximum deviation statistics.\n\nLicence\n--------\nAGPLv3 (see COPYING file). Contact me if you need a different licence.\n\nInstall\n--------\n\n.. image:: https://img.shields.io/pypi/v/bexvar.svg\n :target: https://pypi.python.org/pypi/bexvar\n\n.. image:: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml/badge.svg\n :target: https://github.com/JohannesBuchner/bexvar/actions/workflows/test.yml\n\n.. image:: https://img.shields.io/badge/astroph.HE-arXiv%3A2106.14529-B31B1B.svg\n :target: https://arxiv.org/abs/2106.14529\n :alt: Publication\n\n\n\nInstall as usual::\n\n\t$ pip3 install bexvar\n\nThis also installs the required `ultranest <https://johannesbuchner.github.io/UltraNest/>`_\npython package.\n\n\nExample\n----------\n\nRun with::\n\n\t$ bexvar_ero.py 020_LightCurve_00001.fits\n\nRun simpler variability analyses with::\n\n\t$ quick_ero.py 020_LightCurve_*.fits.gz\n\n\nContributing\n--------------\n\nContributions are welcome. Please open pull requests\nwith code contributions, or issues for bugs and questions.\n\nContributors include:\n\n* Johannes Buchner\n* David Bogensberger\n\nIf you use this software, please cite this paper: https://arxiv.org/abs/2106.14529\n\n\nChangelog\n----------\n",
"bugtrack_url": null,
"license": "Affero GNU General Public License v3",
"summary": "Bayesian excess variance for Poisson data time series with backgrounds.",
"version": "1.1.1",
"project_urls": {
"Homepage": "https://github.com/JohannesBuchner/bexvar"
},
"split_keywords": [
"bexvar"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2208af06ca041bb29484c2694792559f1f70384d071f92508b5ed50bad93a87b",
"md5": "f93d2e98d2e8fd82e9f33282a0364325",
"sha256": "7832274bb03696b70feedbfd2f2d6db192b82c13d26bae750be22cc82882984c"
},
"downloads": -1,
"filename": "bexvar-1.1.1.tar.gz",
"has_sig": false,
"md5_digest": "f93d2e98d2e8fd82e9f33282a0364325",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 19496,
"upload_time": "2024-02-08T09:38:54",
"upload_time_iso_8601": "2024-02-08T09:38:54.303105Z",
"url": "https://files.pythonhosted.org/packages/22/08/af06ca041bb29484c2694792559f1f70384d071f92508b5ed50bad93a87b/bexvar-1.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-08 09:38:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "JohannesBuchner",
"github_project": "bexvar",
"travis_ci": true,
"coveralls": true,
"github_actions": true,
"lcname": "bexvar"
}