bibcodex


Namebibcodex JSON
Version 1.1.7 PyPI version JSON
download
home_pagehttps://github.com/thoppe/bibcodex
SummaryAccess, analyze, and display bibliographic information
upload_time2023-10-11 22:52:39
maintainer
docs_urlNone
authorTravis Hoppe
requires_python
licenseCC-SA
keywords bibliographic publications pubmed nlp
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # bibcodex
Library to access, analyze, and display bibliographic information.

[![PyPI version](https://badge.fury.io/py/bibcodex.svg)](https://badge.fury.io/py/bibcodex)

## Installation

    pip install bibcodex

## Examples

Import the `pandas` and `bibcodex` together and load a dataframe:
```python
import bibcodex
import pandas as pd

# You should always cast your search variables (pmid, doi) to str.
df = pd.read_csv("data/sample_data.csv", dtype={'pmid':str})
```

Valid download methods are: `icite`, `doi2pmid`, `semanticScholar`, or `pubmed`:

```python
# Set the index to search query
df = df.set_index("doi")

# Download the information, and combine it with the original dataframe:
info = df.bibcodex.download('semanticScholar')
print(df.combine_first(info[["title"]]))

"""
doi                      title                                                           
10.1001/jama.2017.18444  Progressive Massive Fibrosis in Coal Miners Fr...
10.1001/jama.2018.0126   Birth Defects Potentially Related to Zika Viru...
10.1001/jama.2018.0708   Association Between Estimated Cumulative Vacci...
10.1001/jama.2018.10488  Electronic Cigarette Sales in the United State...
"""
```

All search queries are cached locally in `./cache`. To clear the cache use:

```python
df.codex.clear()
```


| API  | Returned fields |
| ------------- | ------------- |
| [`pubmed`](https://www.ncbi.nlm.nih.gov/home/develop/api/) | title, issue, pages, abstract, journal, authors, pubdate, mesh_terms, publication_types, chemical_list, keywords, doi, references, delete, languages, vernacular_title, affiliations, pmc, other_id, medline_ta, nlm_unique_id, issn_linking, country  |
| [`semanticScholar`](https://www.semanticscholar.org/product/api#Fetch-Paper)  | abstract, arxivId, authors, citationVelocity, citations, corpusId, fieldsOfStudy, influentialCitationCount, isOpenAccess, isPublisherLicensed, is_open_access, is_publisher_licensed, numCitedBy, numCiting, paperId, references, s2FieldsOfStudy, title, topics, url, venue, year  |
| [`icite`](https://icite.od.nih.gov/api) | year, title, authors, journal, is_research_article, relative_citation_ratio, nih_percentile, human, animal, molecular_cellular, apt, is_clinical, citation_count, citations_per_year, expected_citations_per_year, field_citation_rate, provisional, x_coord, y_coord, cited_by_clin, cited_by, references, doi  |
| [`doi2pmid`](https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0) | live, status, errmsg, pmcid, pmid, versions  |




## Roadmap

- [x] API access: Pubmed (Parsed MEDLINE data)
- [x] API access: Semantic Scholar (PMID)
- [x] API access: iCite
- [x] API access: Semantic Scholar (DOI)
- [x] API access: DOI to PMID NLM www.ncbi.nlm.nih.gov/pmc/tools/idconv/
- [ ] API access: Pubmed (XML)
- [ ] API access: arXiv
- [ ] API access: CoLIL
- [x] API access, validation of input
- [x] API access, multi item requests
- [x] API access, chunking
- [ ] API access, include status_code in download results 
- [ ] API access, better error handling
- [x] API caching, clearing
- [x] Codex, validate PMID
- [x] Codex, validate DOI
- [x] Codex, build dataframe from items
- [x] Testing harness
- [ ] Full testing coverage
- [x] Code linting
- [x] pypi library
- [x] README with examples
- [ ] Status bar for long downloads
- [ ] Embedding functions (SPECTER)
- [ ] Clustering
- [ ] Visualization (streamlit)


## Development

Built with ❤ ️by [@metasemantic](https://twitter.com/metasemantic). Package is linted by [black](https://github.com/psf/black) and conforms to standards by [flake8](https://github.com/PyCQA/flake8). Pull requests accepted, but please provide tests with full coverage for new code.




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/thoppe/bibcodex",
    "name": "bibcodex",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "bibliographic,publications,pubmed,NLP",
    "author": "Travis Hoppe",
    "author_email": "travis.hoppe+{package_name}@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/22/bd/23e4ad603c5adbda3050c10dd0735db0d0fdb1b9f6f0fdfb054e8a99416c/bibcodex-1.1.7.tar.gz",
    "platform": null,
    "description": "# bibcodex\nLibrary to access, analyze, and display bibliographic information.\n\n[![PyPI version](https://badge.fury.io/py/bibcodex.svg)](https://badge.fury.io/py/bibcodex)\n\n## Installation\n\n    pip install bibcodex\n\n## Examples\n\nImport the `pandas` and `bibcodex` together and load a dataframe:\n```python\nimport bibcodex\nimport pandas as pd\n\n# You should always cast your search variables (pmid, doi) to str.\ndf = pd.read_csv(\"data/sample_data.csv\", dtype={'pmid':str})\n```\n\nValid download methods are: `icite`, `doi2pmid`, `semanticScholar`, or `pubmed`:\n\n```python\n# Set the index to search query\ndf = df.set_index(\"doi\")\n\n# Download the information, and combine it with the original dataframe:\ninfo = df.bibcodex.download('semanticScholar')\nprint(df.combine_first(info[[\"title\"]]))\n\n\"\"\"\ndoi                      title                                                           \n10.1001/jama.2017.18444  Progressive Massive Fibrosis in Coal Miners Fr...\n10.1001/jama.2018.0126   Birth Defects Potentially Related to Zika Viru...\n10.1001/jama.2018.0708   Association Between Estimated Cumulative Vacci...\n10.1001/jama.2018.10488  Electronic Cigarette Sales in the United State...\n\"\"\"\n```\n\nAll search queries are cached locally in `./cache`. To clear the cache use:\n\n```python\ndf.codex.clear()\n```\n\n\n| API  | Returned fields |\n| ------------- | ------------- |\n| [`pubmed`](https://www.ncbi.nlm.nih.gov/home/develop/api/) | title, issue, pages, abstract, journal, authors, pubdate, mesh_terms, publication_types, chemical_list, keywords, doi, references, delete, languages, vernacular_title, affiliations, pmc, other_id, medline_ta, nlm_unique_id, issn_linking, country  |\n| [`semanticScholar`](https://www.semanticscholar.org/product/api#Fetch-Paper)  | abstract, arxivId, authors, citationVelocity, citations, corpusId, fieldsOfStudy, influentialCitationCount, isOpenAccess, isPublisherLicensed, is_open_access, is_publisher_licensed, numCitedBy, numCiting, paperId, references, s2FieldsOfStudy, title, topics, url, venue, year  |\n| [`icite`](https://icite.od.nih.gov/api) | year, title, authors, journal, is_research_article, relative_citation_ratio, nih_percentile, human, animal, molecular_cellular, apt, is_clinical, citation_count, citations_per_year, expected_citations_per_year, field_citation_rate, provisional, x_coord, y_coord, cited_by_clin, cited_by, references, doi  |\n| [`doi2pmid`](https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0) | live, status, errmsg, pmcid, pmid, versions  |\n\n\n\n\n## Roadmap\n\n- [x] API access: Pubmed (Parsed MEDLINE data)\n- [x] API access: Semantic Scholar (PMID)\n- [x] API access: iCite\n- [x] API access: Semantic Scholar (DOI)\n- [x] API access: DOI to PMID NLM www.ncbi.nlm.nih.gov/pmc/tools/idconv/\n- [ ] API access: Pubmed (XML)\n- [ ] API access: arXiv\n- [ ] API access: CoLIL\n- [x] API access, validation of input\n- [x] API access, multi item requests\n- [x] API access, chunking\n- [ ] API access, include status_code in download results \n- [ ] API access, better error handling\n- [x] API caching, clearing\n- [x] Codex, validate PMID\n- [x] Codex, validate DOI\n- [x] Codex, build dataframe from items\n- [x] Testing harness\n- [ ] Full testing coverage\n- [x] Code linting\n- [x] pypi library\n- [x] README with examples\n- [ ] Status bar for long downloads\n- [ ] Embedding functions (SPECTER)\n- [ ] Clustering\n- [ ] Visualization (streamlit)\n\n\n## Development\n\nBuilt with \u2764 \ufe0fby [@metasemantic](https://twitter.com/metasemantic). Package is linted by [black](https://github.com/psf/black) and conforms to standards by [flake8](https://github.com/PyCQA/flake8). Pull requests accepted, but please provide tests with full coverage for new code.\n\n\n\n",
    "bugtrack_url": null,
    "license": "CC-SA",
    "summary": "Access, analyze, and display bibliographic information",
    "version": "1.1.7",
    "project_urls": {
        "Homepage": "https://github.com/thoppe/bibcodex"
    },
    "split_keywords": [
        "bibliographic",
        "publications",
        "pubmed",
        "nlp"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "22bd23e4ad603c5adbda3050c10dd0735db0d0fdb1b9f6f0fdfb054e8a99416c",
                "md5": "d7788f4fead59375bec0d607fa64269a",
                "sha256": "e95bc28a5c203b8ea5125918554500c42872a7d5a0dcfaf50ed5f937aa482ec7"
            },
            "downloads": -1,
            "filename": "bibcodex-1.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "d7788f4fead59375bec0d607fa64269a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 29618,
            "upload_time": "2023-10-11T22:52:39",
            "upload_time_iso_8601": "2023-10-11T22:52:39.190510Z",
            "url": "https://files.pythonhosted.org/packages/22/bd/23e4ad603c5adbda3050c10dd0735db0d0fdb1b9f6f0fdfb054e8a99416c/bibcodex-1.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-11 22:52:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thoppe",
    "github_project": "bibcodex",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "bibcodex"
}
        
Elapsed time: 0.14594s