bigquery-agent


Namebigquery-agent JSON
Version 1.2.1 PyPI version JSON
download
home_pageNone
SummaryLibrary for creating agent around BigQuery
upload_time2024-12-27 17:07:49
maintainerNone
docs_urlNone
authorHlib Bochkarev
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Below is a concise `README.md`:

---

# bigquery_agent

`bigquery_agent` creates a Gemini Agents Toolkit-based agent with built-in functions to query a specified BigQuery table.

## Requirements

- Python 3.8+
- [Gemini Agents Toolkit](https://github.com/GeminiAgentsToolkit/gemini-agents-toolkit/blob/main/README.md)
- Google Cloud credentials with BigQuery access
- Vertex AI enabled for your GCP project

## Installation

```bash
pip install bigquery_agent
```

## Usage

```python
import vertexai
from bigquery_agent import create_bigquery_agent

vertexai.init(project="YOUR_GCP_PROJECT", location="us-west1")

agent = create_bigquery_agent(
    bigquery_project_id="YOUR_BQ_PROJECT",
    dataset_id="YOUR_DATASET",
    table_id="YOUR_TABLE",
    model_name="gemini-2.0-flash-exp",
    system_instruction="Query the todos table as needed."
)

response = agent.send_message("Show me all todos from the database")[0]
print(response)
```

This agent can inspect the schema (`get_schema`), run queries (`run_query`), and get table references (`get_table_ref`) using the provided BigQuery credentials and Vertex AI model.

For more details on creating and using agents, refer to the [Gemini Agents Toolkit README](https://github.com/GeminiAgentsToolkit/gemini-agents-toolkit/blob/main/README.md).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "bigquery-agent",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Hlib Bochkarev",
    "author_email": "glebuar@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/8a/1b/5816effa52ebb5a351240f368d8ee84827c6e1da4e3841303c54c31a4409/bigquery_agent-1.2.1.tar.gz",
    "platform": null,
    "description": "Below is a concise `README.md`:\n\n---\n\n# bigquery_agent\n\n`bigquery_agent` creates a Gemini Agents Toolkit-based agent with built-in functions to query a specified BigQuery table.\n\n## Requirements\n\n- Python 3.8+\n- [Gemini Agents Toolkit](https://github.com/GeminiAgentsToolkit/gemini-agents-toolkit/blob/main/README.md)\n- Google Cloud credentials with BigQuery access\n- Vertex AI enabled for your GCP project\n\n## Installation\n\n```bash\npip install bigquery_agent\n```\n\n## Usage\n\n```python\nimport vertexai\nfrom bigquery_agent import create_bigquery_agent\n\nvertexai.init(project=\"YOUR_GCP_PROJECT\", location=\"us-west1\")\n\nagent = create_bigquery_agent(\n    bigquery_project_id=\"YOUR_BQ_PROJECT\",\n    dataset_id=\"YOUR_DATASET\",\n    table_id=\"YOUR_TABLE\",\n    model_name=\"gemini-2.0-flash-exp\",\n    system_instruction=\"Query the todos table as needed.\"\n)\n\nresponse = agent.send_message(\"Show me all todos from the database\")[0]\nprint(response)\n```\n\nThis agent can inspect the schema (`get_schema`), run queries (`run_query`), and get table references (`get_table_ref`) using the provided BigQuery credentials and Vertex AI model.\n\nFor more details on creating and using agents, refer to the [Gemini Agents Toolkit README](https://github.com/GeminiAgentsToolkit/gemini-agents-toolkit/blob/main/README.md).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Library for creating agent around BigQuery",
    "version": "1.2.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ea942520a0d0ed108fdeb988846f8b1fd2ab752020731c902cfcb8b212398226",
                "md5": "57d4a632d5e5a1b62a47e478655b9fad",
                "sha256": "371b34df652e1d74a817dd5f95d0701db8da4758b786eb72610a4a67da1ddec8"
            },
            "downloads": -1,
            "filename": "bigquery_agent-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "57d4a632d5e5a1b62a47e478655b9fad",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7345,
            "upload_time": "2024-12-27T17:07:48",
            "upload_time_iso_8601": "2024-12-27T17:07:48.757147Z",
            "url": "https://files.pythonhosted.org/packages/ea/94/2520a0d0ed108fdeb988846f8b1fd2ab752020731c902cfcb8b212398226/bigquery_agent-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8a1b5816effa52ebb5a351240f368d8ee84827c6e1da4e3841303c54c31a4409",
                "md5": "2ed89d0ad5e3ac11ca7e3d3f3b9d4d60",
                "sha256": "03653012380d02e32212fc327f998ddd4ad9fc8469fa88d8fa8c1801869335f8"
            },
            "downloads": -1,
            "filename": "bigquery_agent-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "2ed89d0ad5e3ac11ca7e3d3f3b9d4d60",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4959,
            "upload_time": "2024-12-27T17:07:49",
            "upload_time_iso_8601": "2024-12-27T17:07:49.812027Z",
            "url": "https://files.pythonhosted.org/packages/8a/1b/5816effa52ebb5a351240f368d8ee84827c6e1da4e3841303c54c31a4409/bigquery_agent-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-27 17:07:49",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "bigquery-agent"
}
        
Elapsed time: 0.38639s