bin2cell


Namebin2cell JSON
Version 0.3.2 PyPI version JSON
download
home_pageNone
SummaryJoin subcellular Visium HD bins into cells
upload_time2024-11-13 10:52:14
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Bin2cell

Visium HD captures gene expression data at a subcellular 2um resolution. It should be possible to use this data to reconstruct cells more accurately than just using the next resolution up (8um), especially if additionally using the available high resolution morphology images.

Bin2cell proposes 2um bin to cell groupings based on segmentation, which can be done on the morphology image and/or a visualisation of the gene expression. The package also corrects for a novel technical effect in the data stemming from variable bin dimensions. The end result is an object with cells, created from grouped 2um bins assigned to the same object after segmentation, carrying spatial information and sharper morphology images for visualisation. More details in the [demo notebook](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/demo.ipynb).

<p align="center"><img src="https://github.com/Teichlab/bin2cell/blob/main/figure.jpg" alt="Label evolution" width="80%" ></p>

## Installation

```bash
pip install bin2cell
```

Additionally, TensorFlow needs to be installed for [StarDist](https://github.com/stardist/stardist) to perform segmentation. The CPU version (installed via `pip install tensorflow`) should suffice for the scale of work performed here.

## Usage and Documentation

**Please refer to the [demo notebook](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/demo.ipynb).** Function docstrings are available on [ReadTheDocs](https://bin2cell.readthedocs.io/en/latest/).

The repository also has notebooks comparing bin2cell output to standard 8um SpaceRanger output:
- Mouse brain [bin2cell](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N1_demo_b2c_mouse_brain_submission.ipynb) and [downstream analysis](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N2_demo_analysis_mouse_brain_submission.ipynb)
- Human colorectal cancer [bin2cell](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N1_demo_b2c_crc_submission.ipynb) and [downstream analysis](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N2_demo_analysis_crc_public.ipynb)

## Citation

Please cite our [paper](https://doi.org/10.1093/bioinformatics/btae546).
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "bin2cell",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "\"Krzysztof Polanski, Nadav Yayon\" <kp9@sanger.ac.uk>",
    "download_url": "https://files.pythonhosted.org/packages/72/7d/ea14e7d91140307d0af7d6ac6a274df3a0bfc13367db33a7d96a1282cc87/bin2cell-0.3.2.tar.gz",
    "platform": null,
    "description": "# Bin2cell\n\nVisium HD captures gene expression data at a subcellular 2um resolution. It should be possible to use this data to reconstruct cells more accurately than just using the next resolution up (8um), especially if additionally using the available high resolution morphology images.\n\nBin2cell proposes 2um bin to cell groupings based on segmentation, which can be done on the morphology image and/or a visualisation of the gene expression. The package also corrects for a novel technical effect in the data stemming from variable bin dimensions. The end result is an object with cells, created from grouped 2um bins assigned to the same object after segmentation, carrying spatial information and sharper morphology images for visualisation. More details in the [demo notebook](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/demo.ipynb).\n\n<p align=\"center\"><img src=\"https://github.com/Teichlab/bin2cell/blob/main/figure.jpg\" alt=\"Label evolution\" width=\"80%\" ></p>\n\n## Installation\n\n```bash\npip install bin2cell\n```\n\nAdditionally, TensorFlow needs to be installed for [StarDist](https://github.com/stardist/stardist) to perform segmentation. The CPU version (installed via `pip install tensorflow`) should suffice for the scale of work performed here.\n\n## Usage and Documentation\n\n**Please refer to the [demo notebook](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/demo.ipynb).** Function docstrings are available on [ReadTheDocs](https://bin2cell.readthedocs.io/en/latest/).\n\nThe repository also has notebooks comparing bin2cell output to standard 8um SpaceRanger output:\n- Mouse brain [bin2cell](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N1_demo_b2c_mouse_brain_submission.ipynb) and [downstream analysis](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N2_demo_analysis_mouse_brain_submission.ipynb)\n- Human colorectal cancer [bin2cell](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N1_demo_b2c_crc_submission.ipynb) and [downstream analysis](https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/N2_demo_analysis_crc_public.ipynb)\n\n## Citation\n\nPlease cite our [paper](https://doi.org/10.1093/bioinformatics/btae546).",
    "bugtrack_url": null,
    "license": null,
    "summary": "Join subcellular Visium HD bins into cells",
    "version": "0.3.2",
    "project_urls": {
        "Documentation": "https://bin2cell.readthedocs.io/en/latest/",
        "Home": "https://github.com/Teichlab/bin2cell"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3c39aeff364ba4fff07066177ddcd8a0f12c6275701a246ba73abde24febd601",
                "md5": "aa17c49abfd56d79fa2f14be15a339f6",
                "sha256": "e7b0ab32dc6b1dfe754eee96b087e4853fa1ebd1084a865370c75518847c550b"
            },
            "downloads": -1,
            "filename": "bin2cell-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "aa17c49abfd56d79fa2f14be15a339f6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 39262,
            "upload_time": "2024-11-13T10:52:11",
            "upload_time_iso_8601": "2024-11-13T10:52:11.868075Z",
            "url": "https://files.pythonhosted.org/packages/3c/39/aeff364ba4fff07066177ddcd8a0f12c6275701a246ba73abde24febd601/bin2cell-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "727dea14e7d91140307d0af7d6ac6a274df3a0bfc13367db33a7d96a1282cc87",
                "md5": "8c69dcdeec5e24828030f1cc7918dece",
                "sha256": "6529a8260b75c8c0237938f4ea389dfe055aea0909a31315f8fec32d44b2c531"
            },
            "downloads": -1,
            "filename": "bin2cell-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "8c69dcdeec5e24828030f1cc7918dece",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 38356,
            "upload_time": "2024-11-13T10:52:14",
            "upload_time_iso_8601": "2024-11-13T10:52:14.096071Z",
            "url": "https://files.pythonhosted.org/packages/72/7d/ea14e7d91140307d0af7d6ac6a274df3a0bfc13367db33a7d96a1282cc87/bin2cell-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-13 10:52:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Teichlab",
    "github_project": "bin2cell",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "bin2cell"
}
        
Elapsed time: 1.11357s