binomialbias


Namebinomialbias JSON
Version 1.3.3 PyPI version JSON
download
home_pagehttp://binomialbias.sciris.org
SummaryQuantitative assessment of discrimination based on the binomial distribution
upload_time2024-06-03 09:21:24
maintainerNone
docs_urlNone
authorP.A. Robinson, C. C. Kerr
requires_pythonNone
licenseNone
keywords binomial distribution discrimination bias sexism racism
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # BinomialBias

[![PyPI](https://badgen.net/pypi/v/binomialbias/?color=blue)](https://pypi.org/project/binomialbias)
[![Tests](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml/badge.svg)](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml?query=workflow)

This library computes and plots quantitative assessments of discrimination within organizations, based on the binomial distribution.

This code supports the following paper:

**Quantitative measures of discrimination with application to appointment processes.** Robinson PA, Kerr CC (2024). *PLoS ONE* 19(3): e0299870. https://doi.org/10.1371/journal.pone.0299870

There are several ways to use this library, described below.


## Webapp

A live webapp is running at https://binomialbias.sciris.org.


## Local installation and usage

### Python

To use locally with Python, run

    pip install binomialbias

This can then be run via e.g.:

    import binomialbias as bb
    bb.plot_bias(n=20, n_e=10, n_a=7)

This example shows the statistics for the case where there were `n = 20` appointments (e.g., the size of a committee), out of which `n_e = 10` people were expected to belong to a given group (e.g., female), and for which `n_a = 7` actually were.

### Shiny

To run the [Shiny](https://shiny.posit.co/py/) app locally, clone the repository from GitHub, then install with

    pip install -e .[app]

The Shiny app can then be run locally via the `run` script.


## Structure

- All code for the Python package is in the `binomialbias` folder.
- The script for generating the figure in the paper is in the `scripts` folder.
- Continuous integration tests are in the `tests` folder.
- Older Jupyter and Matplotlib versions are available in the `archive` folder.

            

Raw data

            {
    "_id": null,
    "home_page": "http://binomialbias.sciris.org",
    "name": "binomialbias",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "binomial distribution, discrimination, bias, sexism, racism",
    "author": "P.A. Robinson, C. C. Kerr",
    "author_email": "cliff@thekerrlab.com",
    "download_url": "https://files.pythonhosted.org/packages/77/3d/ad5c2cdc2a90ab7062d37727521565feca3637e0bfea2896835564246f8f/binomialbias-1.3.3.tar.gz",
    "platform": "OS Independent",
    "description": "# BinomialBias\n\n[![PyPI](https://badgen.net/pypi/v/binomialbias/?color=blue)](https://pypi.org/project/binomialbias)\n[![Tests](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml/badge.svg)](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml?query=workflow)\n\nThis library computes and plots quantitative assessments of discrimination within organizations, based on the binomial distribution.\n\nThis code supports the following paper:\n\n**Quantitative measures of discrimination with application to appointment processes.** Robinson PA, Kerr CC (2024). *PLoS ONE* 19(3): e0299870. https://doi.org/10.1371/journal.pone.0299870\n\nThere are several ways to use this library, described below.\n\n\n## Webapp\n\nA live webapp is running at https://binomialbias.sciris.org.\n\n\n## Local installation and usage\n\n### Python\n\nTo use locally with Python, run\n\n    pip install binomialbias\n\nThis can then be run via e.g.:\n\n    import binomialbias as bb\n    bb.plot_bias(n=20, n_e=10, n_a=7)\n\nThis example shows the statistics for the case where there were `n = 20` appointments (e.g., the size of a committee), out of which `n_e = 10` people were expected to belong to a given group (e.g., female), and for which `n_a = 7` actually were.\n\n### Shiny\n\nTo run the [Shiny](https://shiny.posit.co/py/) app locally, clone the repository from GitHub, then install with\n\n    pip install -e .[app]\n\nThe Shiny app can then be run locally via the `run` script.\n\n\n## Structure\n\n- All code for the Python package is in the `binomialbias` folder.\n- The script for generating the figure in the paper is in the `scripts` folder.\n- Continuous integration tests are in the `tests` folder.\n- Older Jupyter and Matplotlib versions are available in the `archive` folder.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Quantitative assessment of discrimination based on the binomial distribution",
    "version": "1.3.3",
    "project_urls": {
        "Homepage": "http://binomialbias.sciris.org"
    },
    "split_keywords": [
        "binomial distribution",
        " discrimination",
        " bias",
        " sexism",
        " racism"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6edb66933c3da04ba0c06cf60115618a6132851d08b97ab62b7ab0af24fcc9c2",
                "md5": "eac3a20c9267c5ad694f6f651b176bf6",
                "sha256": "aba44d2f78f10be86235b5556e42122e663839d65e025e6c4ab579eb2882c449"
            },
            "downloads": -1,
            "filename": "binomialbias-1.3.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "eac3a20c9267c5ad694f6f651b176bf6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 19085,
            "upload_time": "2024-06-03T09:21:22",
            "upload_time_iso_8601": "2024-06-03T09:21:22.464177Z",
            "url": "https://files.pythonhosted.org/packages/6e/db/66933c3da04ba0c06cf60115618a6132851d08b97ab62b7ab0af24fcc9c2/binomialbias-1.3.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "773dad5c2cdc2a90ab7062d37727521565feca3637e0bfea2896835564246f8f",
                "md5": "c2a7733daabbcbedb35163cc21c5f8ba",
                "sha256": "184a8c3bd370d22064c551db29fed3ec55ebfbc0502923d90c3b814d24b31cde"
            },
            "downloads": -1,
            "filename": "binomialbias-1.3.3.tar.gz",
            "has_sig": false,
            "md5_digest": "c2a7733daabbcbedb35163cc21c5f8ba",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 20319,
            "upload_time": "2024-06-03T09:21:24",
            "upload_time_iso_8601": "2024-06-03T09:21:24.932702Z",
            "url": "https://files.pythonhosted.org/packages/77/3d/ad5c2cdc2a90ab7062d37727521565feca3637e0bfea2896835564246f8f/binomialbias-1.3.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-03 09:21:24",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "binomialbias"
}
        
Elapsed time: 0.31027s