# BinomialBias
[![PyPI](https://badgen.net/pypi/v/binomialbias/?color=blue)](https://pypi.org/project/binomialbias)
[![Tests](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml/badge.svg)](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml?query=workflow)
This library computes and plots quantitative assessments of discrimination within organizations, based on the binomial distribution.
This code supports the following paper:
**Quantitative measures of discrimination with application to appointment processes.** Robinson PA, Kerr CC (2024). *PLoS ONE* 19(3): e0299870. https://doi.org/10.1371/journal.pone.0299870
There are several ways to use this library, described below.
## Webapp
A live webapp is running at https://binomialbias.sciris.org.
## Local installation and usage
### Python
To use locally with Python, run
pip install binomialbias
This can then be run via e.g.:
import binomialbias as bb
bb.plot_bias(n=20, n_e=10, n_a=7)
This example shows the statistics for the case where there were `n = 20` appointments (e.g., the size of a committee), out of which `n_e = 10` people were expected to belong to a given group (e.g., female), and for which `n_a = 7` actually were.
### Shiny
To run the [Shiny](https://shiny.posit.co/py/) app locally, clone the repository from GitHub, then install with
pip install -e .[app]
The Shiny app can then be run locally via the `run` script.
## Structure
- All code for the Python package is in the `binomialbias` folder.
- The script for generating the figure in the paper is in the `scripts` folder.
- Continuous integration tests are in the `tests` folder.
- Older Jupyter and Matplotlib versions are available in the `archive` folder.
Raw data
{
"_id": null,
"home_page": "http://binomialbias.sciris.org",
"name": "binomialbias",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "binomial distribution, discrimination, bias, sexism, racism",
"author": "P.A. Robinson, C. C. Kerr",
"author_email": "cliff@thekerrlab.com",
"download_url": "https://files.pythonhosted.org/packages/77/3d/ad5c2cdc2a90ab7062d37727521565feca3637e0bfea2896835564246f8f/binomialbias-1.3.3.tar.gz",
"platform": "OS Independent",
"description": "# BinomialBias\n\n[![PyPI](https://badgen.net/pypi/v/binomialbias/?color=blue)](https://pypi.org/project/binomialbias)\n[![Tests](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml/badge.svg)](https://github.com/thekerrlab/binomialbias/actions/workflows/tests.yaml?query=workflow)\n\nThis library computes and plots quantitative assessments of discrimination within organizations, based on the binomial distribution.\n\nThis code supports the following paper:\n\n**Quantitative measures of discrimination with application to appointment processes.** Robinson PA, Kerr CC (2024). *PLoS ONE* 19(3): e0299870. https://doi.org/10.1371/journal.pone.0299870\n\nThere are several ways to use this library, described below.\n\n\n## Webapp\n\nA live webapp is running at https://binomialbias.sciris.org.\n\n\n## Local installation and usage\n\n### Python\n\nTo use locally with Python, run\n\n pip install binomialbias\n\nThis can then be run via e.g.:\n\n import binomialbias as bb\n bb.plot_bias(n=20, n_e=10, n_a=7)\n\nThis example shows the statistics for the case where there were `n = 20` appointments (e.g., the size of a committee), out of which `n_e = 10` people were expected to belong to a given group (e.g., female), and for which `n_a = 7` actually were.\n\n### Shiny\n\nTo run the [Shiny](https://shiny.posit.co/py/) app locally, clone the repository from GitHub, then install with\n\n pip install -e .[app]\n\nThe Shiny app can then be run locally via the `run` script.\n\n\n## Structure\n\n- All code for the Python package is in the `binomialbias` folder.\n- The script for generating the figure in the paper is in the `scripts` folder.\n- Continuous integration tests are in the `tests` folder.\n- Older Jupyter and Matplotlib versions are available in the `archive` folder.\n",
"bugtrack_url": null,
"license": null,
"summary": "Quantitative assessment of discrimination based on the binomial distribution",
"version": "1.3.3",
"project_urls": {
"Homepage": "http://binomialbias.sciris.org"
},
"split_keywords": [
"binomial distribution",
" discrimination",
" bias",
" sexism",
" racism"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6edb66933c3da04ba0c06cf60115618a6132851d08b97ab62b7ab0af24fcc9c2",
"md5": "eac3a20c9267c5ad694f6f651b176bf6",
"sha256": "aba44d2f78f10be86235b5556e42122e663839d65e025e6c4ab579eb2882c449"
},
"downloads": -1,
"filename": "binomialbias-1.3.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "eac3a20c9267c5ad694f6f651b176bf6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 19085,
"upload_time": "2024-06-03T09:21:22",
"upload_time_iso_8601": "2024-06-03T09:21:22.464177Z",
"url": "https://files.pythonhosted.org/packages/6e/db/66933c3da04ba0c06cf60115618a6132851d08b97ab62b7ab0af24fcc9c2/binomialbias-1.3.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "773dad5c2cdc2a90ab7062d37727521565feca3637e0bfea2896835564246f8f",
"md5": "c2a7733daabbcbedb35163cc21c5f8ba",
"sha256": "184a8c3bd370d22064c551db29fed3ec55ebfbc0502923d90c3b814d24b31cde"
},
"downloads": -1,
"filename": "binomialbias-1.3.3.tar.gz",
"has_sig": false,
"md5_digest": "c2a7733daabbcbedb35163cc21c5f8ba",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 20319,
"upload_time": "2024-06-03T09:21:24",
"upload_time_iso_8601": "2024-06-03T09:21:24.932702Z",
"url": "https://files.pythonhosted.org/packages/77/3d/ad5c2cdc2a90ab7062d37727521565feca3637e0bfea2896835564246f8f/binomialbias-1.3.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-03 09:21:24",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "binomialbias"
}