bio-volumentations


Namebio-volumentations JSON
Version 1.3.0 PyPI version JSON
download
home_pageNone
SummaryLibrary for 3D-5D augmentations of volumetric multi-dimensional biomedical images and their annotations
upload_time2024-06-25 13:45:32
maintainerNone
docs_urlNone
authorLucia Hradecká, Filip Lux, Samuel Šuľan
requires_python>=3.1
licenseMIT License
keywords image augmentation 3d volumetric biomedical bioimage preprocessing transformation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Bio-Volumentations

`Bio-Volumentations` is an image augmentation and preprocessing package for 3D (volumetric), 
4D (time-lapse volumetric or multi-channel volumetric), and 5D (time-lapse multi-channel volumetric) 
biomedical images and their annotations.

The library offers a wide range of efficiently implemented image transformations.
This includes both preprocessing transformations (such as intensity normalisation, padding, and type casting) 
and augmentation transformations (such as affine transform, noise addition and removal, and contrast manipulation).

The `Bio-Volumentations` library is a suitable tool for image manipulation in machine learning applications. 
It can transform several types of reference annotations along with the image data and
it can be used with any major Python deep learning library, including PyTorch, PyTorch Lightning, TensorFlow, and Keras.

This library builds upon wide-spread libraries such as Albumentations and TorchIO (see the Contributions section below). 
Therefore, it can easily be adopted by developers.

# Installation

Install the package from pip using:
```python
pip install bio-volumentations
```

See [the project's PyPI page](https://pypi.org/project/bio-volumentations/) for more details.

## Requirements

- [NumPy](https://numpy.org/)
- [SciPy](https://scipy.org/)
- [Scikit-image](https://scikit-image.org/)
- [SimpleITK](https://simpleitk.org/)


# Usage

### Importing

Import the library to your project using:
```python
import bio_volumentations as biovol
```

### How to Use Bio-Volumentations?

The `Bio-Volumentations` library processes 3D, 4D, and 5D images. Each image must be 
represented as a `numpy.ndarray` and must conform to the following conventions:

- The order of dimensions is [C, Z, Y, X, T], where C is the channel dimension, 
   T is the time dimension, and Z, Y, and X are the spatial dimensions.
- The three spatial dimensions (Z, Y, X) must be present. To transform a 2D image, please create a dummy Z dimension. 
- The channel (C) dimension is optional. If it is not present, the library will automatically
   create a dummy dimension in its place, so the output image shape will be [1, Z, Y, X].
- The time (T) dimension is optional and can only be present if the channel (C) dimension is 
   also present in the input data. To process single-channel time-lapse images, please create a dummy C dimension.

Thus, an input image is interpreted in the following ways based on its dimensionality:

1. 3D: a single-channel volumetric image [Z, Y, X];
2. 4D: a multi-channel volumetric image [C, Z, Y, X];
3. 5D: a single- or multi-channel volumetric image sequence [C, Z, Y, X, T].

The shape of the output image is either [C, Z, Y, X] (cases 1 & 2) or [C, Z, Y, X, T] (case 3).

The images are type-casted to a floating-point datatype before being transformed, irrespective of their actual datatype.

For the specification of image annotation conventions, please see below.

The transformations are implemented as callable classes inheriting from an abstract `Transform` class.
Upon instantiating a transformation object, one has to specify the parameters of the transformation.

All transformations work in a fully 3D fashion. Individual channels and time points of a data volume
are usually transformed separately and in the same manner; however, certain transformations can also work
along these dimensions. For instance, `GaussianBlur` can perform the blurring along the temporal dimension and
with different strength in individual channels.

The data can be transformed by a call to the transformation object.
**It is strongly recommended to use `Compose` to create and use transformation pipelines.** <br>
An instantiated `Compose` object encapsulates the full transformation pipeline and provides additional support:
it automatically checks and adjusts image format and datatype, outputs the image as a contiguous array, and
can optionally convert the transformed image to a desired format.
If you call transformations outside of `Compose`, we cannot guarantee the all assumptions
are checked and enforced, so you might encounter unexpected behaviour.

Below, there are several examples of how to use this library. You are also welcome to check 
[our documentation pages](https://biovolumentations.readthedocs.io/1.3.0/).

### Example: Transforming a Single Image

To create the transformation pipeline, you just need to instantiate all desired transformations
(with the desired parameter values)
and then feed a list of these transformations into a new `Compose` object. 

Optionally, you can specify a datatype conversion transformation that will be applied after the last transformation
in the list, e.g. from the default `numpy.ndarray` to a `torch.Tensor`. You can also specify the probability
of actually applying the whole pipeline as a number between 0 and 1. 
The default probability is 1 - the pipeline is applied for each call.
See the [docs](https://biovolumentations.readthedocs.io/1.3.0/examples.html) for more details.

The `Compose` object is callable. The data is passed as a keyword argument, and the call returns a dictionary 
with the same keywords and corresponding transformed images. This might look like an overkill for a single image, 
but will come handy when transforming images with annotations. The default key for the image is `'image'`.


```python
import numpy as np
from bio_volumentations import Compose, RandomGamma, RandomRotate90, GaussianBlur

# Create the transformation pipeline using Compose
aug = Compose([
        RandomGamma(gamma_limit = (0.8, 1.2), p = 0.8),
        RandomRotate90(axes = [1, 2, 3], p = 1),
        GaussianBlur(sigma = 1.2, p = 0.8)
      ])

# Generate an image - shape [C, Z, Y, X]
img = np.random.rand(1, 128, 256, 256)

# Transform the image
# Please note that the image must be passed as a keyword argument to the transformation pipeline
# and extracted from the outputted dictionary.
data = {'image': img}
aug_data = aug(**data)
transformed_img = aug_data['image']
```

### Example: Transforming Images with Annotations

Sometimes, it is necessary to transform an image with some corresponding additional targets.
To that end, `Bio-Volumentations` define several target types:

- `image` for the image data;
- `mask` for integer-valued label images;
- `float_mask` for real-valued label images;
- `keypoints` for a list of key points; and
- `value` for non-transformed values.

For more information on the format of individual target types, see the 
[Getting Started guide](https://biovolumentations.readthedocs.io/1.3.0/examples.html#example-transforming-images-with-annotations)

If a `Random...` transform receives multiple targets on its input in a single call,
the same transformation parameters are used to transform all of these targets.
For example, `RandomAffineTransform` applies the same geometric transformation to all target types in a single call.

Some transformations, such as `RandomGaussianNoise` or `RandomGamma`, are only defined for the `image` target 
and leave the `mask` and `float_mask` targets unchanged. Please consult the 
[documentation of the individual transforms](https://biovolumentations.readthedocs.io/1.3.0/modules.html) for more details.

The corresponding targets are fed to the `Compose` object call as keyword arguments and extracted from the outputted
dictionary using the same keys. The default key values are `'image'`, `'mask'`, `'float_mask'`, `'keypoints'`, and `'value'`.

```python
import numpy as np
from bio_volumentations import Compose, RandomGamma, RandomRotate90, GaussianBlur

# Create the transformation using Compose
aug = Compose([
        RandomGamma(gamma_limit = (0.8, 1.2), p = 0.8),
        RandomRotate90(axes = [1, 2, 3], p = 1),
        GaussianBlur(sigma = 1.2, p = 0.8)
      ])

# Generate image and a corresponding labeled image
img = np.random.rand(1, 128, 256, 256)
lbl = np.random.randint(0, 1, size=(128, 256, 256), dtype=np.uint8)

# Transform the images
# Please note that the images must be passed as keyword arguments to the transformation pipeline
# and extracted from the outputted dictionary.
data = {'image': img, 'mask': lbl}
aug_data = aug(**data)
transformed_img, transformed_lbl = aug_data['image'], aug_data['mask']
```


### Example: Transforming Multiple Images of the Same Target Type

You can input arbitrary number of inputs to any transformation. To achieve this, you have to define the keywords
for the individual inputs when creating the `Compose` object.
The specified keywords will then be used to input the images to the transformation call as well as to extract the
transformed images from the outputted dictionary.

Specifically, you can define `image`-type target keywords using the `img_keywords` parameter - its value
must be a tuple of strings, each string representing a single keyword. Similarly, there are `mask_keywords`,
`fmask_keywords`, `value_keywords`, and `keypoints_keywords` parameters for the respective target types.

Importantly, there must always be an `image`-type target with the keyword `'image'`.
Otherwise, the keywords can be any valid dictionary keys, and they must be unique within each target type.

You do not need to use all specified keywords in a transformation call. However, at least the target with
the `'image'` keyword must be present in each transformation call.
In our example below, we only transform three targets even though we defined four target keywords explicitly 
(and there are some implicit keywords as well for the other target types).

You cannot define your own target types; that would require re-implementing all existing transforms.

```python
import numpy as np
from bio_volumentations import Compose, RandomGamma, RandomRotate90, GaussianBlur

# Create the transformation using Compose: do not forget to define targets
aug = Compose([
        RandomGamma(gamma_limit = (0.8, 1.2), p = 0.8),
        RandomRotate90(axes = [1, 2, 3], p = 1),
        GaussianBlur(sigma = 1.2, p = 0.8)
    ],
    img_keywords=('image', 'abc'), mask_keywords=('mask',), fmask_keywords=('nothing',))

# Generate the image data: two images and a single int-valued mask
img = np.random.rand(1, 128, 256, 256)
img1 = np.random.rand(1, 128, 256, 256)
lbl = np.random.randint(0, 1, size=(128, 256, 256), dtype=np.uint8)

# Transform the images
# Please note that the images must be passed as keyword arguments to the transformation pipeline
# and extracted from the outputted dictionary.
data = {'image': img, 'abc': img1, 'mask': lbl}
aug_data = aug(**data)
transformed_img = aug_data['image']
transformed_img1 = aug_data['abc']
transformed_lbl = aug_data['mask']
```

### Example: Adding a Custom Transformation

Each transformation inherits from the `Transform` class. You can thus easily implement your own 
transformations and use them with this library. You can check our implementations to see how this can be done.
For example, `Flip` can be implemented as follows:

```python
import numpy as np
from typing import List
from bio_volumentations import DualTransform

class Flip(DualTransform):
    def __init__(self, axes: List[int] = None, always_apply=False, p=1):
        super().__init__(always_apply, p)
        self.axes = axes

    # Transform the image
    def apply(self, img, **params):
        return np.flip(img, params["axes"])

    # Transform the int-valued mask
    def apply_to_mask(self, mask, **params):
       # The mask has no channels
        return np.flip(mask, axis=[item - 1 for item in params["axes"]])
    
    # Transform the float-valued mask
    # By default, float_mask uses the implementation of mask, unless it is overridden (see the implementation of DualTransform).
    #def apply_to_float_mask(self, float_mask, **params):
    #    return self.apply_to_mask(float_mask, **params)

    # Get transformation parameters. Useful especially for RandomXXX transforms to ensure consistent transformation of image tuples.
    def get_params(self, **data):
        axes = self.axes if self.axes is not None else [1, 2, 3]
        return {"axes": axes}
```


# Implemented Transforms

### A List of Implemented Transformations

Point transformations:
```python
GaussianNoise 
PoissonNoise
RandomGamma 
RandomBrightnessContrast 
HistogramEqualization 
Normalize
NormalizeMeanStd
```

Local transformations:
```python
GaussianBlur 
RandomGaussianBlur
```

Geometrical transformations:
```python
AffineTransform
Resize 
Scale
Flip 
CenterCrop 
Pad
RandomAffineTransform
RandomScale 
RandomRotate90
RandomFlip 
RandomCrop
```


# Contributions

Authors of the Bio-Volumentations library: Samuel Šuľan, Lucia Hradecká, Filip Lux.
- Lucia Hradecká: lucia.d.hradecka@gmail.com   
- Filip Lux: lux.filip@gmail.com     

The Bio-Volumentations library is based on the following image augmentation libraries:
- [Albumentations](https://github.com/albumentations-team/albumentations)  
- [Volumentations](https://github.com/ashawkey/volumentations)                  
- [Volumentations: Continued Development](https://github.com/ZFTurbo/volumentations)                   
- [Volumentations: Enhancements](https://github.com/qubvel/volumentations)        
- [Volumentations: Further Enhancements](https://github.com/muellerdo/volumentations)
- [TorchIO](https://github.com/fepegar/torchio)

We would thus like to thank their authors, namely [the Albumentations team](https://github.com/albumentations-team), 
[Pavel Iakubovskii](https://github.com/qubvel), [ZFTurbo](https://github.com/ZFTurbo), 
[ashawkey](https://github.com/ashawkey), [Dominik Müller](https://github.com/muellerdo), and 
[TorchIO contributors](https://github.com/fepegar/torchio?tab=readme-ov-file#contributors).         


# Citation

TBA




            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "bio-volumentations",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.1",
    "maintainer_email": null,
    "keywords": "image, augmentation, 3D, volumetric, biomedical, bioimage, preprocessing, transformation",
    "author": "Lucia Hradeck\u00e1, Filip Lux, Samuel \u0160u\u013ean",
    "author_email": "Lucia Hradeck\u00e1 <lucia.d.hradecka@gmail.com>, Filip Lux <lux.filip@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/1e/96/9eec6d9e7d932e2a8630e6076e67501d90d96ccbea9c2e35412b8fc20bcc/bio_volumentations-1.3.0.tar.gz",
    "platform": null,
    "description": "# Bio-Volumentations\r\n\r\n`Bio-Volumentations` is an image augmentation and preprocessing package for 3D (volumetric), \r\n4D (time-lapse volumetric or multi-channel volumetric), and 5D (time-lapse multi-channel volumetric) \r\nbiomedical images and their annotations.\r\n\r\nThe library offers a wide range of efficiently implemented image transformations.\r\nThis includes both preprocessing transformations (such as intensity normalisation, padding, and type casting) \r\nand augmentation transformations (such as affine transform, noise addition and removal, and contrast manipulation).\r\n\r\nThe `Bio-Volumentations` library is a suitable tool for image manipulation in machine learning applications. \r\nIt can transform several types of reference annotations along with the image data and\r\nit can be used with any major Python deep learning library, including PyTorch, PyTorch Lightning, TensorFlow, and Keras.\r\n\r\nThis library builds upon wide-spread libraries such as Albumentations and TorchIO (see the Contributions section below). \r\nTherefore, it can easily be adopted by developers.\r\n\r\n# Installation\r\n\r\nInstall the package from pip using:\r\n```python\r\npip install bio-volumentations\r\n```\r\n\r\nSee [the project's PyPI page](https://pypi.org/project/bio-volumentations/) for more details.\r\n\r\n## Requirements\r\n\r\n- [NumPy](https://numpy.org/)\r\n- [SciPy](https://scipy.org/)\r\n- [Scikit-image](https://scikit-image.org/)\r\n- [SimpleITK](https://simpleitk.org/)\r\n\r\n\r\n# Usage\r\n\r\n### Importing\r\n\r\nImport the library to your project using:\r\n```python\r\nimport bio_volumentations as biovol\r\n```\r\n\r\n### How to Use Bio-Volumentations?\r\n\r\nThe `Bio-Volumentations` library processes 3D, 4D, and 5D images. Each image must be \r\nrepresented as a `numpy.ndarray` and must conform to the following conventions:\r\n\r\n- The order of dimensions is [C, Z, Y, X, T], where C is the channel dimension, \r\n   T is the time dimension, and Z, Y, and X are the spatial dimensions.\r\n- The three spatial dimensions (Z, Y, X) must be present. To transform a 2D image, please create a dummy Z dimension. \r\n- The channel (C) dimension is optional. If it is not present, the library will automatically\r\n   create a dummy dimension in its place, so the output image shape will be [1, Z, Y, X].\r\n- The time (T) dimension is optional and can only be present if the channel (C) dimension is \r\n   also present in the input data. To process single-channel time-lapse images, please create a dummy C dimension.\r\n\r\nThus, an input image is interpreted in the following ways based on its dimensionality:\r\n\r\n1. 3D: a single-channel volumetric image [Z, Y, X];\r\n2. 4D: a multi-channel volumetric image [C, Z, Y, X];\r\n3. 5D: a single- or multi-channel volumetric image sequence [C, Z, Y, X, T].\r\n\r\nThe shape of the output image is either [C, Z, Y, X] (cases 1 & 2) or [C, Z, Y, X, T] (case 3).\r\n\r\nThe images are type-casted to a floating-point datatype before being transformed, irrespective of their actual datatype.\r\n\r\nFor the specification of image annotation conventions, please see below.\r\n\r\nThe transformations are implemented as callable classes inheriting from an abstract `Transform` class.\r\nUpon instantiating a transformation object, one has to specify the parameters of the transformation.\r\n\r\nAll transformations work in a fully 3D fashion. Individual channels and time points of a data volume\r\nare usually transformed separately and in the same manner; however, certain transformations can also work\r\nalong these dimensions. For instance, `GaussianBlur` can perform the blurring along the temporal dimension and\r\nwith different strength in individual channels.\r\n\r\nThe data can be transformed by a call to the transformation object.\r\n**It is strongly recommended to use `Compose` to create and use transformation pipelines.** <br>\r\nAn instantiated `Compose` object encapsulates the full transformation pipeline and provides additional support:\r\nit automatically checks and adjusts image format and datatype, outputs the image as a contiguous array, and\r\ncan optionally convert the transformed image to a desired format.\r\nIf you call transformations outside of `Compose`, we cannot guarantee the all assumptions\r\nare checked and enforced, so you might encounter unexpected behaviour.\r\n\r\nBelow, there are several examples of how to use this library. You are also welcome to check \r\n[our documentation pages](https://biovolumentations.readthedocs.io/1.3.0/).\r\n\r\n### Example: Transforming a Single Image\r\n\r\nTo create the transformation pipeline, you just need to instantiate all desired transformations\r\n(with the desired parameter values)\r\nand then feed a list of these transformations into a new `Compose` object. \r\n\r\nOptionally, you can specify a datatype conversion transformation that will be applied after the last transformation\r\nin the list, e.g. from the default `numpy.ndarray` to a `torch.Tensor`. You can also specify the probability\r\nof actually applying the whole pipeline as a number between 0 and 1. \r\nThe default probability is 1 - the pipeline is applied for each call.\r\nSee the [docs](https://biovolumentations.readthedocs.io/1.3.0/examples.html) for more details.\r\n\r\nThe `Compose` object is callable. The data is passed as a keyword argument, and the call returns a dictionary \r\nwith the same keywords and corresponding transformed images. This might look like an overkill for a single image, \r\nbut will come handy when transforming images with annotations. The default key for the image is `'image'`.\r\n\r\n\r\n```python\r\nimport numpy as np\r\nfrom bio_volumentations import Compose, RandomGamma, RandomRotate90, GaussianBlur\r\n\r\n# Create the transformation pipeline using Compose\r\naug = Compose([\r\n        RandomGamma(gamma_limit = (0.8, 1.2), p = 0.8),\r\n        RandomRotate90(axes = [1, 2, 3], p = 1),\r\n        GaussianBlur(sigma = 1.2, p = 0.8)\r\n      ])\r\n\r\n# Generate an image - shape [C, Z, Y, X]\r\nimg = np.random.rand(1, 128, 256, 256)\r\n\r\n# Transform the image\r\n# Please note that the image must be passed as a keyword argument to the transformation pipeline\r\n# and extracted from the outputted dictionary.\r\ndata = {'image': img}\r\naug_data = aug(**data)\r\ntransformed_img = aug_data['image']\r\n```\r\n\r\n### Example: Transforming Images with Annotations\r\n\r\nSometimes, it is necessary to transform an image with some corresponding additional targets.\r\nTo that end, `Bio-Volumentations` define several target types:\r\n\r\n- `image` for the image data;\r\n- `mask` for integer-valued label images;\r\n- `float_mask` for real-valued label images;\r\n- `keypoints` for a list of key points; and\r\n- `value` for non-transformed values.\r\n\r\nFor more information on the format of individual target types, see the \r\n[Getting Started guide](https://biovolumentations.readthedocs.io/1.3.0/examples.html#example-transforming-images-with-annotations)\r\n\r\nIf a `Random...` transform receives multiple targets on its input in a single call,\r\nthe same transformation parameters are used to transform all of these targets.\r\nFor example, `RandomAffineTransform` applies the same geometric transformation to all target types in a single call.\r\n\r\nSome transformations, such as `RandomGaussianNoise` or `RandomGamma`, are only defined for the `image` target \r\nand leave the `mask` and `float_mask` targets unchanged. Please consult the \r\n[documentation of the individual transforms](https://biovolumentations.readthedocs.io/1.3.0/modules.html) for more details.\r\n\r\nThe corresponding targets are fed to the `Compose` object call as keyword arguments and extracted from the outputted\r\ndictionary using the same keys. The default key values are `'image'`, `'mask'`, `'float_mask'`, `'keypoints'`, and `'value'`.\r\n\r\n```python\r\nimport numpy as np\r\nfrom bio_volumentations import Compose, RandomGamma, RandomRotate90, GaussianBlur\r\n\r\n# Create the transformation using Compose\r\naug = Compose([\r\n        RandomGamma(gamma_limit = (0.8, 1.2), p = 0.8),\r\n        RandomRotate90(axes = [1, 2, 3], p = 1),\r\n        GaussianBlur(sigma = 1.2, p = 0.8)\r\n      ])\r\n\r\n# Generate image and a corresponding labeled image\r\nimg = np.random.rand(1, 128, 256, 256)\r\nlbl = np.random.randint(0, 1, size=(128, 256, 256), dtype=np.uint8)\r\n\r\n# Transform the images\r\n# Please note that the images must be passed as keyword arguments to the transformation pipeline\r\n# and extracted from the outputted dictionary.\r\ndata = {'image': img, 'mask': lbl}\r\naug_data = aug(**data)\r\ntransformed_img, transformed_lbl = aug_data['image'], aug_data['mask']\r\n```\r\n\r\n\r\n### Example: Transforming Multiple Images of the Same Target Type\r\n\r\nYou can input arbitrary number of inputs to any transformation. To achieve this, you have to define the keywords\r\nfor the individual inputs when creating the `Compose` object.\r\nThe specified keywords will then be used to input the images to the transformation call as well as to extract the\r\ntransformed images from the outputted dictionary.\r\n\r\nSpecifically, you can define `image`-type target keywords using the `img_keywords` parameter - its value\r\nmust be a tuple of strings, each string representing a single keyword. Similarly, there are `mask_keywords`,\r\n`fmask_keywords`, `value_keywords`, and `keypoints_keywords` parameters for the respective target types.\r\n\r\nImportantly, there must always be an `image`-type target with the keyword `'image'`.\r\nOtherwise, the keywords can be any valid dictionary keys, and they must be unique within each target type.\r\n\r\nYou do not need to use all specified keywords in a transformation call. However, at least the target with\r\nthe `'image'` keyword must be present in each transformation call.\r\nIn our example below, we only transform three targets even though we defined four target keywords explicitly \r\n(and there are some implicit keywords as well for the other target types).\r\n\r\nYou cannot define your own target types; that would require re-implementing all existing transforms.\r\n\r\n```python\r\nimport numpy as np\r\nfrom bio_volumentations import Compose, RandomGamma, RandomRotate90, GaussianBlur\r\n\r\n# Create the transformation using Compose: do not forget to define targets\r\naug = Compose([\r\n        RandomGamma(gamma_limit = (0.8, 1.2), p = 0.8),\r\n        RandomRotate90(axes = [1, 2, 3], p = 1),\r\n        GaussianBlur(sigma = 1.2, p = 0.8)\r\n    ],\r\n    img_keywords=('image', 'abc'), mask_keywords=('mask',), fmask_keywords=('nothing',))\r\n\r\n# Generate the image data: two images and a single int-valued mask\r\nimg = np.random.rand(1, 128, 256, 256)\r\nimg1 = np.random.rand(1, 128, 256, 256)\r\nlbl = np.random.randint(0, 1, size=(128, 256, 256), dtype=np.uint8)\r\n\r\n# Transform the images\r\n# Please note that the images must be passed as keyword arguments to the transformation pipeline\r\n# and extracted from the outputted dictionary.\r\ndata = {'image': img, 'abc': img1, 'mask': lbl}\r\naug_data = aug(**data)\r\ntransformed_img = aug_data['image']\r\ntransformed_img1 = aug_data['abc']\r\ntransformed_lbl = aug_data['mask']\r\n```\r\n\r\n### Example: Adding a Custom Transformation\r\n\r\nEach transformation inherits from the `Transform` class. You can thus easily implement your own \r\ntransformations and use them with this library. You can check our implementations to see how this can be done.\r\nFor example, `Flip` can be implemented as follows:\r\n\r\n```python\r\nimport numpy as np\r\nfrom typing import List\r\nfrom bio_volumentations import DualTransform\r\n\r\nclass Flip(DualTransform):\r\n    def __init__(self, axes: List[int] = None, always_apply=False, p=1):\r\n        super().__init__(always_apply, p)\r\n        self.axes = axes\r\n\r\n    # Transform the image\r\n    def apply(self, img, **params):\r\n        return np.flip(img, params[\"axes\"])\r\n\r\n    # Transform the int-valued mask\r\n    def apply_to_mask(self, mask, **params):\r\n       # The mask has no channels\r\n        return np.flip(mask, axis=[item - 1 for item in params[\"axes\"]])\r\n    \r\n    # Transform the float-valued mask\r\n    # By default, float_mask uses the implementation of mask, unless it is overridden (see the implementation of DualTransform).\r\n    #def apply_to_float_mask(self, float_mask, **params):\r\n    #    return self.apply_to_mask(float_mask, **params)\r\n\r\n    # Get transformation parameters. Useful especially for RandomXXX transforms to ensure consistent transformation of image tuples.\r\n    def get_params(self, **data):\r\n        axes = self.axes if self.axes is not None else [1, 2, 3]\r\n        return {\"axes\": axes}\r\n```\r\n\r\n\r\n# Implemented Transforms\r\n\r\n### A List of Implemented Transformations\r\n\r\nPoint transformations:\r\n```python\r\nGaussianNoise \r\nPoissonNoise\r\nRandomGamma \r\nRandomBrightnessContrast \r\nHistogramEqualization \r\nNormalize\r\nNormalizeMeanStd\r\n```\r\n\r\nLocal transformations:\r\n```python\r\nGaussianBlur \r\nRandomGaussianBlur\r\n```\r\n\r\nGeometrical transformations:\r\n```python\r\nAffineTransform\r\nResize \r\nScale\r\nFlip \r\nCenterCrop \r\nPad\r\nRandomAffineTransform\r\nRandomScale \r\nRandomRotate90\r\nRandomFlip \r\nRandomCrop\r\n```\r\n\r\n\r\n# Contributions\r\n\r\nAuthors of the Bio-Volumentations library: Samuel \u0160u\u013ean, Lucia Hradeck\u00e1, Filip Lux.\r\n- Lucia Hradeck\u00e1: lucia.d.hradecka@gmail.com   \r\n- Filip Lux: lux.filip@gmail.com     \r\n\r\nThe Bio-Volumentations library is based on the following image augmentation libraries:\r\n- [Albumentations](https://github.com/albumentations-team/albumentations)  \r\n- [Volumentations](https://github.com/ashawkey/volumentations)                  \r\n- [Volumentations: Continued Development](https://github.com/ZFTurbo/volumentations)                   \r\n- [Volumentations: Enhancements](https://github.com/qubvel/volumentations)        \r\n- [Volumentations: Further Enhancements](https://github.com/muellerdo/volumentations)\r\n- [TorchIO](https://github.com/fepegar/torchio)\r\n\r\nWe would thus like to thank their authors, namely [the Albumentations team](https://github.com/albumentations-team), \r\n[Pavel Iakubovskii](https://github.com/qubvel), [ZFTurbo](https://github.com/ZFTurbo), \r\n[ashawkey](https://github.com/ashawkey), [Dominik M\u00fcller](https://github.com/muellerdo), and \r\n[TorchIO contributors](https://github.com/fepegar/torchio?tab=readme-ov-file#contributors).         \r\n\r\n\r\n# Citation\r\n\r\nTBA\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Library for 3D-5D augmentations of volumetric multi-dimensional biomedical images and their annotations",
    "version": "1.3.0",
    "project_urls": {
        "Documentation": "https://biovolumentations.readthedocs.io/1.3.0/",
        "Homepage": "https://gitlab.fi.muni.cz/cbia/bio-volumentations/-/tree/1.3.0?ref_type=tags",
        "Repository": "https://gitlab.fi.muni.cz/cbia/bio-volumentations/-/tree/1.3.0?ref_type=tags"
    },
    "split_keywords": [
        "image",
        " augmentation",
        " 3d",
        " volumetric",
        " biomedical",
        " bioimage",
        " preprocessing",
        " transformation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "011056a112858bc1e389cbb50b84dea1a018f9c2ed4641d469775db80f00df15",
                "md5": "4444baa0e383048dfbc2b3d4a506327e",
                "sha256": "da0da9d128769e89bffb10bc100ca9836546c326f3c91f35871a1bda25d9a9ab"
            },
            "downloads": -1,
            "filename": "bio_volumentations-1.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4444baa0e383048dfbc2b3d4a506327e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.1",
            "size": 46801,
            "upload_time": "2024-06-25T13:45:29",
            "upload_time_iso_8601": "2024-06-25T13:45:29.921643Z",
            "url": "https://files.pythonhosted.org/packages/01/10/56a112858bc1e389cbb50b84dea1a018f9c2ed4641d469775db80f00df15/bio_volumentations-1.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1e969eec6d9e7d932e2a8630e6076e67501d90d96ccbea9c2e35412b8fc20bcc",
                "md5": "5464a0ddf06469f3931e343604ad9aed",
                "sha256": "4000288e54b4a40e1e1029d8909a6cc6795ee4b37b6a02eb5a6d389bd442757e"
            },
            "downloads": -1,
            "filename": "bio_volumentations-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5464a0ddf06469f3931e343604ad9aed",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.1",
            "size": 37330,
            "upload_time": "2024-06-25T13:45:32",
            "upload_time_iso_8601": "2024-06-25T13:45:32.578798Z",
            "url": "https://files.pythonhosted.org/packages/1e/96/9eec6d9e7d932e2a8630e6076e67501d90d96ccbea9c2e35412b8fc20bcc/bio_volumentations-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-25 13:45:32",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "bio-volumentations"
}
        
Elapsed time: 0.25345s