biobatchnet


Namebiobatchnet JSON
Version 0.1.2 PyPI version JSON
download
home_pageNone
SummaryA deep learning framework for batch effect correction in biological data
upload_time2025-09-09 01:56:14
maintainerNone
docs_urlNone
authorHaochen Liu
requires_python>=3.9
licenseMIT
keywords batch-effect deep-learning single-cell imc scrna-seq bioinformatics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # BioBatchNet

## Installation
### Clone the Repository

Clone the repository to your local machine:

```bash
git clone https://github.com/Manchester-HealthAI/BioBatchNet](https://github.com/Manchester-HealthAI/BioBatchNet
```

### Set Up the Environment

Create a virtual environment and install dependencies using `environment.yml`:

#### Using Conda:

```bash
conda env create -f environment.yml
conda activate bbn
```

## BioBatchNet Usage

### Enter BioBatchNet
```bash
cd BioBatchNet
```

### Construct dataset
For the IMC dataset, place the dataset inside:

```bash
mv <your-imc-dataset> Data/IMC/
```

For scRNA-seq data, create a folder named `gene_data` inside the `Data` directory and place the dataset inside:

```bash
mkdir -p Data/gene_data/
mv <your-scrna-dataset> Data/scRNA-seq/
```

### Batch effect correction

**For IMC Data**
To process **IMC** data, run the following command to train BioBatchNet:
```bash
python imc.py -c config/IMC/IMMUcan.yaml
```

**For scRNA-seq Data**
To process **scRNA-seq** data, modify the dataset, run the following command to train BioBatchNet:
```bash
python scrna.py -c config/IMC/macaque.yaml
```

## CPC Usage

CPC utilizes the **embedding output from BioBatchNet** as input. The provided sample data consists of the **batch effect corrected embedding of IMMUcan IMC data**.

To use CPC, ensure you are running in the **same environment** as BioBatchNet.  
All experiment results can be found in the following directory:

```bash
cd CPC/IMC_experiment
```

✅ **Key Notes**:  
- CPC requires embeddings from BioBatchNet as input.  
- Sample data includes batch-corrected IMMUcan IMC embeddings.  
- Ensure the **same computational environment** as BioBatchNet before running CPC.  

## 📂 Data Download Link

To use BioBatchNet for **batch effect correction**, you need to download the corresponding dataset and place it in the appropriate directory.

### **🔹 Download scRNA-seq Data**
The **scRNA-seq dataset** is available on OneDrive. Click the link below to download:

🔗 [Download scRNA-seq Data](https://drive.google.com/drive/folders/1m4AkNc_KMadp7J_lL4jOQj9DdyKutEZ5?usp=sharing)

### **🔹 Download IMC Data**
The **IMC dataset** can be accessed from the **Bodenmiller Group IMC datasets repository**. Visit the link below to explore and download the datasets:

🔗 [IMC Datasets - Bodenmiller Group](https://github.com/BodenmillerGroup/imcdatasets)


## To Do List

- [x] Data download link
- [ ] Checkpoint
- [ ] Benchmark method results

## License

This project is licensed under the MIT License. See the LICENSE file for details.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "biobatchnet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "Haochen Liu <haiping.liu.uom@gmail.com>",
    "keywords": "batch-effect, deep-learning, single-cell, IMC, scRNA-seq, bioinformatics",
    "author": "Haochen Liu",
    "author_email": "Haochen Liu <haiping.liu.uom@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ab/74/5281be6f5f3edbf098ecc6e2f74fd177b849545b071e9385228da2feeeeb/biobatchnet-0.1.2.tar.gz",
    "platform": null,
    "description": "# BioBatchNet\n\n## Installation\n### Clone the Repository\n\nClone the repository to your local machine:\n\n```bash\ngit clone https://github.com/Manchester-HealthAI/BioBatchNet](https://github.com/Manchester-HealthAI/BioBatchNet\n```\n\n### Set Up the Environment\n\nCreate a virtual environment and install dependencies using `environment.yml`:\n\n#### Using Conda:\n\n```bash\nconda env create -f environment.yml\nconda activate bbn\n```\n\n## BioBatchNet Usage\n\n### Enter BioBatchNet\n```bash\ncd BioBatchNet\n```\n\n### Construct dataset\nFor the IMC dataset, place the dataset inside:\n\n```bash\nmv <your-imc-dataset> Data/IMC/\n```\n\nFor scRNA-seq data, create a folder named `gene_data` inside the `Data` directory and place the dataset inside:\n\n```bash\nmkdir -p Data/gene_data/\nmv <your-scrna-dataset> Data/scRNA-seq/\n```\n\n### Batch effect correction\n\n**For IMC Data**\nTo process **IMC** data, run the following command to train BioBatchNet:\n```bash\npython imc.py -c config/IMC/IMMUcan.yaml\n```\n\n**For scRNA-seq Data**\nTo process **scRNA-seq** data, modify the dataset, run the following command to train BioBatchNet:\n```bash\npython scrna.py -c config/IMC/macaque.yaml\n```\n\n## CPC Usage\n\nCPC utilizes the **embedding output from BioBatchNet** as input. The provided sample data consists of the **batch effect corrected embedding of IMMUcan IMC data**.\n\nTo use CPC, ensure you are running in the **same environment** as BioBatchNet.  \nAll experiment results can be found in the following directory:\n\n```bash\ncd CPC/IMC_experiment\n```\n\n\u2705 **Key Notes**:  \n- CPC requires embeddings from BioBatchNet as input.  \n- Sample data includes batch-corrected IMMUcan IMC embeddings.  \n- Ensure the **same computational environment** as BioBatchNet before running CPC.  \n\n## \ud83d\udcc2 Data Download Link\n\nTo use BioBatchNet for **batch effect correction**, you need to download the corresponding dataset and place it in the appropriate directory.\n\n### **\ud83d\udd39 Download scRNA-seq Data**\nThe **scRNA-seq dataset** is available on OneDrive. Click the link below to download:\n\n\ud83d\udd17 [Download scRNA-seq Data](https://drive.google.com/drive/folders/1m4AkNc_KMadp7J_lL4jOQj9DdyKutEZ5?usp=sharing)\n\n### **\ud83d\udd39 Download IMC Data**\nThe **IMC dataset** can be accessed from the **Bodenmiller Group IMC datasets repository**. Visit the link below to explore and download the datasets:\n\n\ud83d\udd17 [IMC Datasets - Bodenmiller Group](https://github.com/BodenmillerGroup/imcdatasets)\n\n\n## To Do List\n\n- [x] Data download link\n- [ ] Checkpoint\n- [ ] Benchmark method results\n\n## License\n\nThis project is licensed under the MIT License. See the LICENSE file for details.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A deep learning framework for batch effect correction in biological data",
    "version": "0.1.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/Manchester-HealthAI/BioBatchNet/issues",
        "Documentation": "https://github.com/Manchester-HealthAI/BioBatchNet/blob/main/USAGE.md",
        "Homepage": "https://github.com/Manchester-HealthAI/BioBatchNet",
        "Repository": "https://github.com/Manchester-HealthAI/BioBatchNet"
    },
    "split_keywords": [
        "batch-effect",
        " deep-learning",
        " single-cell",
        " imc",
        " scrna-seq",
        " bioinformatics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a3a1f433279316ea2a53b99c9245c5b57106af58d71f80adbd12769fcf74fcd4",
                "md5": "fce3c6143efc40414b2b07b3a7fb2340",
                "sha256": "354b0a0023ed8d70cad29cd65a267f922851fb835723dac397730d0f79805998"
            },
            "downloads": -1,
            "filename": "biobatchnet-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fce3c6143efc40414b2b07b3a7fb2340",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 31334,
            "upload_time": "2025-09-09T01:56:13",
            "upload_time_iso_8601": "2025-09-09T01:56:13.339029Z",
            "url": "https://files.pythonhosted.org/packages/a3/a1/f433279316ea2a53b99c9245c5b57106af58d71f80adbd12769fcf74fcd4/biobatchnet-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ab745281be6f5f3edbf098ecc6e2f74fd177b849545b071e9385228da2feeeeb",
                "md5": "4831ea5cab62abd1efe9f4d75afc432f",
                "sha256": "96f2fefd99cefc91eece59d3d4b929030054a53ea33d5b9bb9d7c2a7a6875b63"
            },
            "downloads": -1,
            "filename": "biobatchnet-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "4831ea5cab62abd1efe9f4d75afc432f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 26179,
            "upload_time": "2025-09-09T01:56:14",
            "upload_time_iso_8601": "2025-09-09T01:56:14.710958Z",
            "url": "https://files.pythonhosted.org/packages/ab/74/5281be6f5f3edbf098ecc6e2f74fd177b849545b071e9385228da2feeeeb/biobatchnet-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-09 01:56:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Manchester-HealthAI",
    "github_project": "BioBatchNet",
    "github_not_found": true,
    "lcname": "biobatchnet"
}
        
Elapsed time: 1.37184s