biofusion


Namebiofusion JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/CalmScout/BioFusion
SummaryMultilayer networks for biological multimodal data fusion and analysis.
upload_time2025-01-31 12:58:30
maintainerNone
docs_urlNone
authorAnton Popov
requires_python>=3.7
licenseMIT License
keywords nbdev jupyter notebook python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # BioFusion


<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

A tool for multimodal biological data integration and analysis with the
help of multilayer networks.

This repository contains code developed during collaboration between
Fujitsu Research of Europe and Barcelona Supercomputing Center.

## Organisation

The directory structure is as follows:

    .
    |-- data
    |   |-- GeneCelltypes
    |   |   |-- gene_celltypes_all_common.txt
    |   |   |-- gene_celltypes_all_common_cnv.txt
    |   |   |-- gene_celltypes_all_common_rna.txt
    |   |   |-- gene_celltypes_all_unique.txt
    |   |   |-- gene_celltypes_all_unique_cnv.txt
    |   |   `-- gene_celltypes_all_unique_rna.txt
    |   |-- MultilayerCommunities
    |   |   |-- <BSC-community-trajectories.tsv>
    |   |   `-- <BSC-distance-matrix.tsv>
    |   |-- MultilayerGraphs
    |   |   |-- <BSC-MLN-layer-1.json>
    |   |   |-- :
    |   |   `-- <BSC-MLN-layer-5.json>
    |   |-- TCGA_BRCA_Dic_Hover_files
    |   |   `-- TCGA-E2-A1B6-01A-03-TSC.f0917d61-c963-42cf-86c7-48b1e70c662d.pt
    |   |-- TopGenesWSI
    |   |   |-- common_genes
    |   |   |   |-- box_level
    |   |   |   |   `-- TCGA-E2-A1B6-01A-03-TSC.f0917d61-c963-42cf-86c7-48b1e70c662d
    |   |   |   |       `-- stats.csv
    |   |   |   `-- wsi_level
    |   |   `-- unique_genes
    |   |       |-- box_level
    |   |       `-- wsi_level
    |   |-- cnv.csv
    |   `-- rna.csv
    |-- outputs
    |   |-- TCGA_BRCA_spatial
    |   |-- TCGA_Gene_Graphs
    |   `-- TopGenesMLN
    |-- scripts
    |   |-- create_gene_graph.py
    |   |-- create_gene_list.py
    |   |-- get_WSI_celltype_weights.py
    |   `-- get_WSI_gene_info.py
    |-- README.md
    `-- requirements.txt

## Usage

The Python scripts can be run from the `/scripts` directory after
installing all necessary Python modules as listed in `requirements.txt`.

The following scripts are provided:

`create_gene_list.py` - Description: This script finds the set of genes
that are common between the MLN and the genomic data (CNV or RNA). Files
in the folder that have suffix “\_cnv” and “\_rna” are generated using
this script. - Input: /data/GeneCelltypes, /data/cnv.csv - Output:
/data/GeneCelltypes

`get_WSI_gene_info.py` - This script/module reads top genes from WSI
patches and retrieves gene associations and significant neighbourhood
communities from multilayer network. - Input: /data/TopGenesWSI -
Output: /outputs/TopGenesMLN

`get_WSI_celltype_weights.py` - This script takes WSI Graphs (where
patches correspond to groups of nodes), gene celltype associations, and
bulk-RNA data, and produces heatmaps of approximated spatial gene
expression. - Input: /data/TCGA_BRCA_Dic_Hover_files,
/data/GeneCelltypes, /data/rna.csv - Output: /outputs/TCGA_BRCA_spatial

`create_gene_graph.py` - Description: This script takes the genomic data
(CNV or RNA) and MLN graphs (along with computes Louvain community based
Hamming distance matrix) and generates a hierarchical clustering based
similarity matrix for the genes and a gene graph with edge attributes
reflecting the gene-gene similarities. - Input: /data/cnv.csv,
/data/MultilayerGraphs, /dataa/MultilayerCommunities - Output:
/outputs/TCGA_Gene_Graphs

To run notebooks, please install the package in the editable mode:

    pip install -e .

from the package roor directory.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/CalmScout/BioFusion",
    "name": "biofusion",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "nbdev jupyter notebook python",
    "author": "Anton Popov",
    "author_email": "popovanton567@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/60/3b/65f3e4a38af6c6f9bf9d8ad1b30979f541b3214385fd89d8e151c9eac7bb/biofusion-0.0.2.tar.gz",
    "platform": null,
    "description": "# BioFusion\n\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\nA tool for multimodal biological data integration and analysis with the\nhelp of multilayer networks.\n\nThis repository contains code developed during collaboration between\nFujitsu Research of Europe and Barcelona Supercomputing Center.\n\n## Organisation\n\nThe directory structure is as follows:\n\n    .\n    |-- data\n    |   |-- GeneCelltypes\n    |   |   |-- gene_celltypes_all_common.txt\n    |   |   |-- gene_celltypes_all_common_cnv.txt\n    |   |   |-- gene_celltypes_all_common_rna.txt\n    |   |   |-- gene_celltypes_all_unique.txt\n    |   |   |-- gene_celltypes_all_unique_cnv.txt\n    |   |   `-- gene_celltypes_all_unique_rna.txt\n    |   |-- MultilayerCommunities\n    |   |   |-- <BSC-community-trajectories.tsv>\n    |   |   `-- <BSC-distance-matrix.tsv>\n    |   |-- MultilayerGraphs\n    |   |   |-- <BSC-MLN-layer-1.json>\n    |   |   |-- :\n    |   |   `-- <BSC-MLN-layer-5.json>\n    |   |-- TCGA_BRCA_Dic_Hover_files\n    |   |   `-- TCGA-E2-A1B6-01A-03-TSC.f0917d61-c963-42cf-86c7-48b1e70c662d.pt\n    |   |-- TopGenesWSI\n    |   |   |-- common_genes\n    |   |   |   |-- box_level\n    |   |   |   |   `-- TCGA-E2-A1B6-01A-03-TSC.f0917d61-c963-42cf-86c7-48b1e70c662d\n    |   |   |   |       `-- stats.csv\n    |   |   |   `-- wsi_level\n    |   |   `-- unique_genes\n    |   |       |-- box_level\n    |   |       `-- wsi_level\n    |   |-- cnv.csv\n    |   `-- rna.csv\n    |-- outputs\n    |   |-- TCGA_BRCA_spatial\n    |   |-- TCGA_Gene_Graphs\n    |   `-- TopGenesMLN\n    |-- scripts\n    |   |-- create_gene_graph.py\n    |   |-- create_gene_list.py\n    |   |-- get_WSI_celltype_weights.py\n    |   `-- get_WSI_gene_info.py\n    |-- README.md\n    `-- requirements.txt\n\n## Usage\n\nThe Python scripts can be run from the `/scripts` directory after\ninstalling all necessary Python modules as listed in `requirements.txt`.\n\nThe following scripts are provided:\n\n`create_gene_list.py` - Description: This script finds the set of genes\nthat are common between the MLN and the genomic data (CNV or RNA). Files\nin the folder that have suffix \u201c\\_cnv\u201d and \u201c\\_rna\u201d are generated using\nthis script. - Input: /data/GeneCelltypes, /data/cnv.csv - Output:\n/data/GeneCelltypes\n\n`get_WSI_gene_info.py` - This script/module reads top genes from WSI\npatches and retrieves gene associations and significant neighbourhood\ncommunities from multilayer network. - Input: /data/TopGenesWSI -\nOutput: /outputs/TopGenesMLN\n\n`get_WSI_celltype_weights.py` - This script takes WSI Graphs (where\npatches correspond to groups of nodes), gene celltype associations, and\nbulk-RNA data, and produces heatmaps of approximated spatial gene\nexpression. - Input: /data/TCGA_BRCA_Dic_Hover_files,\n/data/GeneCelltypes, /data/rna.csv - Output: /outputs/TCGA_BRCA_spatial\n\n`create_gene_graph.py` - Description: This script takes the genomic data\n(CNV or RNA) and MLN graphs (along with computes Louvain community based\nHamming distance matrix) and generates a hierarchical clustering based\nsimilarity matrix for the genes and a gene graph with edge attributes\nreflecting the gene-gene similarities. - Input: /data/cnv.csv,\n/data/MultilayerGraphs, /dataa/MultilayerCommunities - Output:\n/outputs/TCGA_Gene_Graphs\n\nTo run notebooks, please install the package in the editable mode:\n\n    pip install -e .\n\nfrom the package roor directory.\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Multilayer networks for biological multimodal data fusion and analysis.",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/CalmScout/BioFusion"
    },
    "split_keywords": [
        "nbdev",
        "jupyter",
        "notebook",
        "python"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "daea6e216fbe1b944d1a61c73799a027f96374274dc857c5882c680af233264c",
                "md5": "495a9237757f9e605a91ff1e547fa935",
                "sha256": "599cc4f634eb9d40b9b2abd10d49ee3b8e08c7132a1b06e24887336de1cd3162"
            },
            "downloads": -1,
            "filename": "biofusion-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "495a9237757f9e605a91ff1e547fa935",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 10510,
            "upload_time": "2025-01-31T12:58:28",
            "upload_time_iso_8601": "2025-01-31T12:58:28.811177Z",
            "url": "https://files.pythonhosted.org/packages/da/ea/6e216fbe1b944d1a61c73799a027f96374274dc857c5882c680af233264c/biofusion-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "603b65f3e4a38af6c6f9bf9d8ad1b30979f541b3214385fd89d8e151c9eac7bb",
                "md5": "08a7a17127e35687db92efccc8255ace",
                "sha256": "8ebc36caa1370ada8146226a4aadc50947cdc1c126d685ded593554affcf596b"
            },
            "downloads": -1,
            "filename": "biofusion-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "08a7a17127e35687db92efccc8255ace",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 10724,
            "upload_time": "2025-01-31T12:58:30",
            "upload_time_iso_8601": "2025-01-31T12:58:30.915143Z",
            "url": "https://files.pythonhosted.org/packages/60/3b/65f3e4a38af6c6f9bf9d8ad1b30979f541b3214385fd89d8e151c9eac7bb/biofusion-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-31 12:58:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "CalmScout",
    "github_project": "BioFusion",
    "github_not_found": true,
    "lcname": "biofusion"
}
        
Elapsed time: 1.48923s