bispy-polar


Namebispy-polar JSON
Version 0.9.4.dev0 PyPI version JSON
download
home_pagehttps://github.com/jflamant/bispy
SummaryAn open-source python framework for processing bivariate signals.
upload_time2024-11-15 16:21:20
maintainerNone
docs_urlNone
authorJulien Flamant
requires_pythonNone
licenseCeCIll
keywords signal processing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # BiSPy : Bivariate Signal Processing with Python

[![docs-page](https://img.shields.io/badge/docs-latest-blue)](https://jflamant.github.io/bispy/)
[![PyPI version](https://badge.fury.io/py/bispy-polar.svg)](https://badge.fury.io/py/bispy-polar)

BiSPy is an open-source python framework for processing bivariate signals. It supports our papers on time-frequency analysis [1], spectral analysis [2] and linear time-invariant filtering [3] of bivariate signals.

> [1] Julien Flamant, Nicolas Le Bihan, Pierre Chainais: “Time-frequency analysis of bivariate signals”, Applied and Computational Harmonic Analysis, 2017; [arXiv:1609.0246](http://arxiv.org/abs/1609.02463), [doi:10.1016/j.acha.2017.05.007](https://doi.org/10.1016/j.acha.2017.05.007)

> [2] Julien Flamant, Nicolas Le Bihan, Pierre Chainais: “Spectral analysis of stationary random bivariate signals”, 2017, IEEE Transactions on Signal Processing; [arXiv:1703.06417](http://arxiv.org/abs/1703.06417), [doi:10.1109/TSP.2017.2736494](https://doi.org/10.1109/TSP.2017.2736494)

> [3] Julien Flamant, Pierre Chainais, Nicolas Le Bihan: “A complete framework for linear filtering of bivariate signals”, 2018; IEEE Transactions on Signal Processing; [arXiv:1802.02469](https://arxiv.org/abs/1802.02469), [doi:10.1109/TSP.2018.2855659](https://doi.org/10.1109/TSP.2018.2855659)

These papers contains theoretical results and several applications that can be reproduced with this toolbox.


This python toolbox is currently under development and is hosted on GitHub. If you encounter a bug or something unexpected please let me know by [raising an issue](https://github.com/jflamant/bispy/issues) on the project page.

### Install from PyPi

Due to name conflict the available version on PyPi is named ``bispy-polar''. To install from PyPi, simply type

```
pip install bispy-polar
```

It will automatically install dependencies (see also below). 

To get started, simply use 
```
import bispy as bsp
```

Requirements
============
BiSPy works with python 3.5+.

Dependencies:
 -   [NumPy](http://www.numpy.org)
 -   [SciPy](https://www.scipy.org)
 -   [Matplotlib](http://matplotlib.org)
 -   [numpy-quaternion](https://github.com/moble/quaternion)

To install dependencies:
```shell
pip install numpy scipy matplotlib numpy-quaternion
```

[numpy-quaternion](https://github.com/moble/quaternion) add quaternion dtype support to numpy. Implementation by [moble]. Since this python toolbox relies extensively on this module, you can check out first the nice introduction [here](https://github.com/moble).


License
=======
This software is distributed under the [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) license.

Cite this work
==============
If you use this package for your own work, please consider citing it with this piece of BibTeX:

```bibtex
@misc{BiSPy,
    title =   {{BiSPy: an Open-Source Python project for processing bivariate signals}},
    author =  {Julien Flamant},
    year =    {2018},
    url =     {https://github.com/jflamant/bispy/},
    howpublished = {Online at: \url{github.com/jflamant/bispy/}},
    note =    {Code at https://github.com/jflamant/bispy/, documentation at https://bispy.readthedocs.io/}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jflamant/bispy",
    "name": "bispy-polar",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "signal processing",
    "author": "Julien Flamant",
    "author_email": "julien.flamant@cnrs.fr",
    "download_url": "https://files.pythonhosted.org/packages/5b/94/bed31d284f0348388032bafff91a420a4fa7e33eb233cab2f4fd9465069b/bispy_polar-0.9.4.dev0.tar.gz",
    "platform": null,
    "description": "# BiSPy : Bivariate Signal Processing with Python\n\n[![docs-page](https://img.shields.io/badge/docs-latest-blue)](https://jflamant.github.io/bispy/)\n[![PyPI version](https://badge.fury.io/py/bispy-polar.svg)](https://badge.fury.io/py/bispy-polar)\n\nBiSPy is an open-source python framework for processing bivariate signals. It supports our papers on time-frequency analysis [1], spectral analysis [2] and linear time-invariant filtering [3] of bivariate signals.\n\n> [1] Julien Flamant, Nicolas Le Bihan, Pierre Chainais: \u201cTime-frequency analysis of bivariate signals\u201d, Applied and Computational Harmonic Analysis, 2017; [arXiv:1609.0246](http://arxiv.org/abs/1609.02463), [doi:10.1016/j.acha.2017.05.007](https://doi.org/10.1016/j.acha.2017.05.007)\n\n> [2] Julien Flamant, Nicolas Le Bihan, Pierre Chainais: \u201cSpectral analysis of stationary random bivariate signals\u201d, 2017, IEEE Transactions on Signal Processing; [arXiv:1703.06417](http://arxiv.org/abs/1703.06417), [doi:10.1109/TSP.2017.2736494](https://doi.org/10.1109/TSP.2017.2736494)\n\n> [3] Julien Flamant, Pierre Chainais, Nicolas Le Bihan: \u201cA complete framework for linear filtering of bivariate signals\u201d, 2018; IEEE Transactions on Signal Processing; [arXiv:1802.02469](https://arxiv.org/abs/1802.02469), [doi:10.1109/TSP.2018.2855659](https://doi.org/10.1109/TSP.2018.2855659)\n\nThese papers contains theoretical results and several applications that can be reproduced with this toolbox.\n\n\nThis python toolbox is currently under development and is hosted on GitHub. If you encounter a bug or something unexpected please let me know by [raising an issue](https://github.com/jflamant/bispy/issues) on the project page.\n\n### Install from PyPi\n\nDue to name conflict the available version on PyPi is named ``bispy-polar''. To install from PyPi, simply type\n\n```\npip install bispy-polar\n```\n\nIt will automatically install dependencies (see also below). \n\nTo get started, simply use \n```\nimport bispy as bsp\n```\n\nRequirements\n============\nBiSPy works with python 3.5+.\n\nDependencies:\n -   [NumPy](http://www.numpy.org)\n -   [SciPy](https://www.scipy.org)\n -   [Matplotlib](http://matplotlib.org)\n -   [numpy-quaternion](https://github.com/moble/quaternion)\n\nTo install dependencies:\n```shell\npip install numpy scipy matplotlib numpy-quaternion\n```\n\n[numpy-quaternion](https://github.com/moble/quaternion) add quaternion dtype support to numpy. Implementation by [moble]. Since this python toolbox relies extensively on this module, you can check out first the nice introduction [here](https://github.com/moble).\n\n\nLicense\n=======\nThis software is distributed under the [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) license.\n\nCite this work\n==============\nIf you use this package for your own work, please consider citing it with this piece of BibTeX:\n\n```bibtex\n@misc{BiSPy,\n    title =   {{BiSPy: an Open-Source Python project for processing bivariate signals}},\n    author =  {Julien Flamant},\n    year =    {2018},\n    url =     {https://github.com/jflamant/bispy/},\n    howpublished = {Online at: \\url{github.com/jflamant/bispy/}},\n    note =    {Code at https://github.com/jflamant/bispy/, documentation at https://bispy.readthedocs.io/}\n}\n```\n",
    "bugtrack_url": null,
    "license": "CeCIll",
    "summary": "An open-source python framework for processing     bivariate signals.",
    "version": "0.9.4.dev0",
    "project_urls": {
        "Homepage": "https://github.com/jflamant/bispy"
    },
    "split_keywords": [
        "signal",
        "processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "24ad02edcff4e9ee9902443551fdab4feba118dec105bcb934c1d3f7525862d8",
                "md5": "f45d83e3fd9cfad318154a9b9f5b9ddb",
                "sha256": "06b6f427d67f870346aa057ad2636ba2f67607b62acbf3615d59d59bbe893f06"
            },
            "downloads": -1,
            "filename": "bispy_polar-0.9.4.dev0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f45d83e3fd9cfad318154a9b9f5b9ddb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 30684,
            "upload_time": "2024-11-15T16:21:18",
            "upload_time_iso_8601": "2024-11-15T16:21:18.537547Z",
            "url": "https://files.pythonhosted.org/packages/24/ad/02edcff4e9ee9902443551fdab4feba118dec105bcb934c1d3f7525862d8/bispy_polar-0.9.4.dev0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5b94bed31d284f0348388032bafff91a420a4fa7e33eb233cab2f4fd9465069b",
                "md5": "e62fafa18f856de42667c221036347f6",
                "sha256": "a7ccfed8d0fff74a835c818ec0f15dc06654a1fca294f745aeffbdd92a3dcd79"
            },
            "downloads": -1,
            "filename": "bispy_polar-0.9.4.dev0.tar.gz",
            "has_sig": false,
            "md5_digest": "e62fafa18f856de42667c221036347f6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 30958,
            "upload_time": "2024-11-15T16:21:20",
            "upload_time_iso_8601": "2024-11-15T16:21:20.404019Z",
            "url": "https://files.pythonhosted.org/packages/5b/94/bed31d284f0348388032bafff91a420a4fa7e33eb233cab2f4fd9465069b/bispy_polar-0.9.4.dev0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-15 16:21:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jflamant",
    "github_project": "bispy",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "bispy-polar"
}
        
Elapsed time: 0.38209s