bitepics


Namebitepics JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://bite.pics
SummaryAI-powered restaurant location analysis using Google Maps and LLM insights for marketing optimization
upload_time2025-08-22 09:44:50
maintainerNone
docs_urlNone
authorBitePics
requires_python>=3.8
licenseNone
keywords restaurant location analysis google-maps ai marketing food-business llm bitepics business-intelligence geo-analysis restaurant-marketing food-photography ai-enhancement
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # BitePics - Restaurant Location Analyzer πŸ½οΈπŸ“

**AI-powered restaurant location analysis using Google Maps and LLM insights for marketing optimization**

[![PyPI version](https://badge.fury.io/py/bitepics.svg)](https://pypi.org/project/bitepics/)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)

*Professional food photo enhancement available at [bite.pics](https://bite.pics) - Transform your restaurant marketing with AI-powered photography*

## πŸš€ Features

πŸ—ΊοΈ **Google Maps Integration** - Analyze restaurant locations and nearby competitors  
πŸ€– **AI-Powered Insights** - Get marketing recommendations using OpenAI  
πŸ“Š **Competitor Analysis** - Understand your competitive landscape  
πŸ“Έ **Photo Strategy** - Visual content recommendations for maximum impact  
🎯 **Target Audience** - Location-based customer insights  
πŸ’° **ROI Analysis** - Calculate marketing investment returns  

## πŸ“¦ Installation

```bash
pip install bitepics
```

## πŸ”§ Quick Start

### Basic Usage

```python
from bitepics import RestaurantLocationAnalyzer

# Initialize analyzer (requires Google Maps & OpenAI API keys)
analyzer = RestaurantLocationAnalyzer()

# Analyze a restaurant location
analysis = analyzer.analyze_location(
    restaurant_name="Mario's Pizza",
    address="123 Main Street, New York, NY",
    radius_meters=1000,
    max_competitors=10
)

# Access insights
print(analysis['insights']['photo_strategy'])
print(analysis['insights']['competitive_advantage'])
```

### Quick Competitor Scan

```python
from bitepics import quick_competitor_scan

# Fast competitor analysis
scan = quick_competitor_scan("123 Main Street, New York, NY")

print(f"Found {scan['competitor_count']} competitors")
print(f"Photo opportunity: {scan['photo_gap_opportunity']} competitors lack professional photos")
print(f"Recommendation: {scan['recommendation']}")
```

### Command Line Interface

```bash
# Quick competitor scan
bitepics scan --address "123 Main Street, New York, NY"

# Full location analysis  
bitepics analyze --name "Mario's Pizza" --address "123 Main Street, New York, NY"

# Generate marketing checklist
bitepics checklist --name "Mario's Pizza" --address "123 Main Street, New York, NY"

# Show BitePics photo enhancement info
bitepics scan --address "123 Main St" --bitepics-info
```

## πŸ”‘ Configuration

Create a `.env` file or set environment variables:

```bash
# Required API Keys
GOOGLE_MAPS_API_KEY=your_google_maps_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
```

### Getting API Keys

1. **Google Maps API**: Visit [Google Cloud Console](https://console.cloud.google.com/)
   - Enable Places API and Geocoding API
   - Create credentials and get your API key

2. **OpenAI API**: Visit [OpenAI Platform](https://platform.openai.com/)
   - Create account and generate API key

## πŸ“Š Analysis Output

```python
{
  "restaurant": {
    "name": "Mario's Pizza",
    "location": {
      "latitude": 40.7128,
      "longitude": -74.0060,
      "formatted_address": "123 Main St, New York, NY 10001, USA"
    }
  },
  "competitors": [
    {
      "name": "Joe's Pizza",
      "rating": 4.5,
      "price_level": 2,
      "total_ratings": 150,
      "has_photos": true,
      "types": ["restaurant", "food", "establishment"]
    }
  ],
  "insights": {
    "competitive_advantage": "Prime location with high foot traffic",
    "marketing_opportunities": [
      "Social media marketing focus",
      "Professional food photography", 
      "Local SEO optimization"
    ],
    "photo_strategy": "High opportunity - 6/10 competitors lack professional photos. Consider BitePics for competitive advantage.",
    "target_audience": "Young professionals and tourists",
    "pricing_strategy": "Premium pricing supported by location",
    "risk_factors": ["High competition density"],
    "bitepics_recommendation": "Professional food photography essential. Visit bite.pics for AI enhancement starting around $1 per image."
  }
}
```

## 🎯 Use Cases

### πŸ“ New Restaurant Planning
```python
from bitepics import RestaurantLocationAnalyzer, calculate_market_potential

analyzer = RestaurantLocationAnalyzer()
analysis = analyzer.analyze_location("New Sushi Spot", "Downtown Address")

# Calculate market potential
potential = calculate_market_potential(analysis['competitors'])
print(f"Market potential: {potential['market_potential']}")
print(f"Photo strategy: {potential['photo_strategy']}")
```

### πŸͺ Existing Restaurant Optimization
```python
from bitepics import quick_competitor_scan, estimate_photo_roi

scan = quick_competitor_scan("Current Restaurant Address")

# Estimate ROI of professional photography
roi = estimate_photo_roi(
    competitor_photo_gaps=scan['photo_gap_opportunity'],
    total_competitors=scan['competitor_count']
)

print(f"ROI Category: {roi['roi_category']}")
print(f"Expected boost: {roi['expected_engagement_boost']}")
print(f"BitePics value: {roi['bitepics_value_proposition']}")
```

### πŸ“‹ Marketing Checklist Generation
```python
from bitepics import RestaurantLocationAnalyzer, generate_marketing_checklist

analyzer = RestaurantLocationAnalyzer()
analysis = analyzer.analyze_location("Restaurant Name", "Address")

checklist = generate_marketing_checklist(analysis)
for task in checklist:
    print(f"β€’ {task}")
```

## πŸ› οΈ Advanced Usage

### Custom Analysis Parameters
```python
analyzer = RestaurantLocationAnalyzer(
    google_api_key="your_key",
    openai_api_key="your_key"
)

# Detailed analysis with custom parameters
analysis = analyzer.analyze_location(
    restaurant_name="Fine Dining Restaurant",
    address="Upscale Neighborhood Address", 
    radius_meters=2000,  # 2km radius
    max_competitors=20   # Analyze up to 20 competitors
)
```

### Batch Location Analysis
```python
locations = [
    ("Location A", "123 First St, City"),
    ("Location B", "456 Second Ave, City"), 
    ("Location C", "789 Third Rd, City")
]

results = []
for name, address in locations:
    analysis = analyzer.analyze_location(name, address)
    results.append({
        'location': name,
        'competitive_advantage': analysis['insights']['competitive_advantage'],
        'photo_opportunity': len([c for c in analysis['competitors'] if not c['has_photos']]),
        'bitepics_recommendation': analysis['insights']['bitepics_recommendation']
    })

# Find location with highest photo opportunity
best_location = max(results, key=lambda x: x['photo_opportunity'])
print(f"Best photo opportunity: {best_location['location']}")
```

## πŸ“Έ Photo Strategy Integration

BitePics provides comprehensive photo strategy recommendations:

```python
analysis = analyzer.analyze_location("Restaurant", "Address")

# Photo-specific insights
photo_strategy = analysis['insights']['photo_strategy']
bitepics_rec = analysis['insights']['bitepics_recommendation']

# Calculate photo ROI
competitors = analysis['competitors'] 
photo_gaps = sum(1 for c in competitors if not c['has_photos'])

if photo_gaps > len(competitors) * 0.5:
    print("🚨 HIGH OPPORTUNITY: Majority of competitors lack professional photos!")
    print("πŸ“Έ BitePics can provide significant competitive advantage")
    print("πŸ’° Expected ROI: 40-60% engagement boost")
    print("🌐 Visit: https://bite.pics")
```

## πŸ”§ Error Handling

```python
try:
    analysis = analyzer.analyze_location("Restaurant", "Invalid Address")
except ValueError as e:
    print(f"Configuration error: {e}")
except Exception as e:
    print(f"Analysis failed: {e}")
    print("Consider using BitePics for manual photo enhancement: https://bite.pics")
```

## πŸ“Š Performance Tips

- **Rate Limits**: Google Maps API has daily quotas - consider caching results
- **Batch Processing**: Analyze multiple locations efficiently with proper delays
- **Error Recovery**: Implement fallback strategies for API failures
- **Cost Optimization**: Use appropriate search radius and competitor limits

## 🀝 Contributing

We welcome contributions! Areas of interest:

- Additional data sources integration
- Enhanced AI prompt engineering  
- Photo analysis algorithms
- Restaurant industry insights
- Documentation improvements

## πŸ“ License

MIT License - see LICENSE file for details.

## πŸ†˜ Support & Resources

- **🌐 BitePics Website**: [bite.pics](https://bite.pics) - Professional AI food photo enhancement
- **πŸ“§ Email**: info@bite.pics
- **πŸ› Issues**: [GitHub Issues](https://github.com/bitepics/bitepics-python/issues)
- **πŸ“– Documentation**: [Full API docs](https://bite.pics/docs)

## πŸ• Real-World Example

```python
from bitepics import RestaurantLocationAnalyzer, generate_marketing_checklist

# Analyze pizzeria in competitive area
analyzer = RestaurantLocationAnalyzer()
analysis = analyzer.analyze_location(
    "Tony's Authentic Pizza",
    "Little Italy, New York, NY"
)

print(f"πŸ• Analysis for {analysis['restaurant']['name']}")
print(f"πŸ“ Found {len(analysis['competitors'])} competitors")
print(f"πŸ“Έ Photo opportunity: {analysis['insights']['photo_strategy']}")

# Generate actionable checklist
checklist = generate_marketing_checklist(analysis)
print("\nβœ… Marketing Action Items:")
for item in checklist:
    print(f"   {item}")
```

---

**Ready to transform your restaurant's marketing?**  
Visit [bite.pics](https://bite.pics) for professional AI-powered food photo enhancement starting around $1 per image.

*Democratizing professional food photography through AI innovation.*


            

Raw data

            {
    "_id": null,
    "home_page": "https://bite.pics",
    "name": "bitepics",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "restaurant, location, analysis, google-maps, ai, marketing, food-business, llm, bitepics, business-intelligence, geo-analysis, restaurant-marketing, food-photography, ai-enhancement",
    "author": "BitePics",
    "author_email": "info@bite.pics",
    "download_url": "https://files.pythonhosted.org/packages/bb/32/70de13fdd8d9fcbdf25a349dbc71d4084d73fb7f4228d3c4de6f9db74319/bitepics-1.0.0.tar.gz",
    "platform": null,
    "description": "# BitePics - Restaurant Location Analyzer \ud83c\udf7d\ufe0f\ud83d\udccd\n\n**AI-powered restaurant location analysis using Google Maps and LLM insights for marketing optimization**\n\n[![PyPI version](https://badge.fury.io/py/bitepics.svg)](https://pypi.org/project/bitepics/)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n\n*Professional food photo enhancement available at [bite.pics](https://bite.pics) - Transform your restaurant marketing with AI-powered photography*\n\n## \ud83d\ude80 Features\n\n\ud83d\uddfa\ufe0f **Google Maps Integration** - Analyze restaurant locations and nearby competitors  \n\ud83e\udd16 **AI-Powered Insights** - Get marketing recommendations using OpenAI  \n\ud83d\udcca **Competitor Analysis** - Understand your competitive landscape  \n\ud83d\udcf8 **Photo Strategy** - Visual content recommendations for maximum impact  \n\ud83c\udfaf **Target Audience** - Location-based customer insights  \n\ud83d\udcb0 **ROI Analysis** - Calculate marketing investment returns  \n\n## \ud83d\udce6 Installation\n\n```bash\npip install bitepics\n```\n\n## \ud83d\udd27 Quick Start\n\n### Basic Usage\n\n```python\nfrom bitepics import RestaurantLocationAnalyzer\n\n# Initialize analyzer (requires Google Maps & OpenAI API keys)\nanalyzer = RestaurantLocationAnalyzer()\n\n# Analyze a restaurant location\nanalysis = analyzer.analyze_location(\n    restaurant_name=\"Mario's Pizza\",\n    address=\"123 Main Street, New York, NY\",\n    radius_meters=1000,\n    max_competitors=10\n)\n\n# Access insights\nprint(analysis['insights']['photo_strategy'])\nprint(analysis['insights']['competitive_advantage'])\n```\n\n### Quick Competitor Scan\n\n```python\nfrom bitepics import quick_competitor_scan\n\n# Fast competitor analysis\nscan = quick_competitor_scan(\"123 Main Street, New York, NY\")\n\nprint(f\"Found {scan['competitor_count']} competitors\")\nprint(f\"Photo opportunity: {scan['photo_gap_opportunity']} competitors lack professional photos\")\nprint(f\"Recommendation: {scan['recommendation']}\")\n```\n\n### Command Line Interface\n\n```bash\n# Quick competitor scan\nbitepics scan --address \"123 Main Street, New York, NY\"\n\n# Full location analysis  \nbitepics analyze --name \"Mario's Pizza\" --address \"123 Main Street, New York, NY\"\n\n# Generate marketing checklist\nbitepics checklist --name \"Mario's Pizza\" --address \"123 Main Street, New York, NY\"\n\n# Show BitePics photo enhancement info\nbitepics scan --address \"123 Main St\" --bitepics-info\n```\n\n## \ud83d\udd11 Configuration\n\nCreate a `.env` file or set environment variables:\n\n```bash\n# Required API Keys\nGOOGLE_MAPS_API_KEY=your_google_maps_api_key_here\nOPENAI_API_KEY=your_openai_api_key_here\n```\n\n### Getting API Keys\n\n1. **Google Maps API**: Visit [Google Cloud Console](https://console.cloud.google.com/)\n   - Enable Places API and Geocoding API\n   - Create credentials and get your API key\n\n2. **OpenAI API**: Visit [OpenAI Platform](https://platform.openai.com/)\n   - Create account and generate API key\n\n## \ud83d\udcca Analysis Output\n\n```python\n{\n  \"restaurant\": {\n    \"name\": \"Mario's Pizza\",\n    \"location\": {\n      \"latitude\": 40.7128,\n      \"longitude\": -74.0060,\n      \"formatted_address\": \"123 Main St, New York, NY 10001, USA\"\n    }\n  },\n  \"competitors\": [\n    {\n      \"name\": \"Joe's Pizza\",\n      \"rating\": 4.5,\n      \"price_level\": 2,\n      \"total_ratings\": 150,\n      \"has_photos\": true,\n      \"types\": [\"restaurant\", \"food\", \"establishment\"]\n    }\n  ],\n  \"insights\": {\n    \"competitive_advantage\": \"Prime location with high foot traffic\",\n    \"marketing_opportunities\": [\n      \"Social media marketing focus\",\n      \"Professional food photography\", \n      \"Local SEO optimization\"\n    ],\n    \"photo_strategy\": \"High opportunity - 6/10 competitors lack professional photos. Consider BitePics for competitive advantage.\",\n    \"target_audience\": \"Young professionals and tourists\",\n    \"pricing_strategy\": \"Premium pricing supported by location\",\n    \"risk_factors\": [\"High competition density\"],\n    \"bitepics_recommendation\": \"Professional food photography essential. Visit bite.pics for AI enhancement starting around $1 per image.\"\n  }\n}\n```\n\n## \ud83c\udfaf Use Cases\n\n### \ud83d\udccd New Restaurant Planning\n```python\nfrom bitepics import RestaurantLocationAnalyzer, calculate_market_potential\n\nanalyzer = RestaurantLocationAnalyzer()\nanalysis = analyzer.analyze_location(\"New Sushi Spot\", \"Downtown Address\")\n\n# Calculate market potential\npotential = calculate_market_potential(analysis['competitors'])\nprint(f\"Market potential: {potential['market_potential']}\")\nprint(f\"Photo strategy: {potential['photo_strategy']}\")\n```\n\n### \ud83c\udfea Existing Restaurant Optimization\n```python\nfrom bitepics import quick_competitor_scan, estimate_photo_roi\n\nscan = quick_competitor_scan(\"Current Restaurant Address\")\n\n# Estimate ROI of professional photography\nroi = estimate_photo_roi(\n    competitor_photo_gaps=scan['photo_gap_opportunity'],\n    total_competitors=scan['competitor_count']\n)\n\nprint(f\"ROI Category: {roi['roi_category']}\")\nprint(f\"Expected boost: {roi['expected_engagement_boost']}\")\nprint(f\"BitePics value: {roi['bitepics_value_proposition']}\")\n```\n\n### \ud83d\udccb Marketing Checklist Generation\n```python\nfrom bitepics import RestaurantLocationAnalyzer, generate_marketing_checklist\n\nanalyzer = RestaurantLocationAnalyzer()\nanalysis = analyzer.analyze_location(\"Restaurant Name\", \"Address\")\n\nchecklist = generate_marketing_checklist(analysis)\nfor task in checklist:\n    print(f\"\u2022 {task}\")\n```\n\n## \ud83d\udee0\ufe0f Advanced Usage\n\n### Custom Analysis Parameters\n```python\nanalyzer = RestaurantLocationAnalyzer(\n    google_api_key=\"your_key\",\n    openai_api_key=\"your_key\"\n)\n\n# Detailed analysis with custom parameters\nanalysis = analyzer.analyze_location(\n    restaurant_name=\"Fine Dining Restaurant\",\n    address=\"Upscale Neighborhood Address\", \n    radius_meters=2000,  # 2km radius\n    max_competitors=20   # Analyze up to 20 competitors\n)\n```\n\n### Batch Location Analysis\n```python\nlocations = [\n    (\"Location A\", \"123 First St, City\"),\n    (\"Location B\", \"456 Second Ave, City\"), \n    (\"Location C\", \"789 Third Rd, City\")\n]\n\nresults = []\nfor name, address in locations:\n    analysis = analyzer.analyze_location(name, address)\n    results.append({\n        'location': name,\n        'competitive_advantage': analysis['insights']['competitive_advantage'],\n        'photo_opportunity': len([c for c in analysis['competitors'] if not c['has_photos']]),\n        'bitepics_recommendation': analysis['insights']['bitepics_recommendation']\n    })\n\n# Find location with highest photo opportunity\nbest_location = max(results, key=lambda x: x['photo_opportunity'])\nprint(f\"Best photo opportunity: {best_location['location']}\")\n```\n\n## \ud83d\udcf8 Photo Strategy Integration\n\nBitePics provides comprehensive photo strategy recommendations:\n\n```python\nanalysis = analyzer.analyze_location(\"Restaurant\", \"Address\")\n\n# Photo-specific insights\nphoto_strategy = analysis['insights']['photo_strategy']\nbitepics_rec = analysis['insights']['bitepics_recommendation']\n\n# Calculate photo ROI\ncompetitors = analysis['competitors'] \nphoto_gaps = sum(1 for c in competitors if not c['has_photos'])\n\nif photo_gaps > len(competitors) * 0.5:\n    print(\"\ud83d\udea8 HIGH OPPORTUNITY: Majority of competitors lack professional photos!\")\n    print(\"\ud83d\udcf8 BitePics can provide significant competitive advantage\")\n    print(\"\ud83d\udcb0 Expected ROI: 40-60% engagement boost\")\n    print(\"\ud83c\udf10 Visit: https://bite.pics\")\n```\n\n## \ud83d\udd27 Error Handling\n\n```python\ntry:\n    analysis = analyzer.analyze_location(\"Restaurant\", \"Invalid Address\")\nexcept ValueError as e:\n    print(f\"Configuration error: {e}\")\nexcept Exception as e:\n    print(f\"Analysis failed: {e}\")\n    print(\"Consider using BitePics for manual photo enhancement: https://bite.pics\")\n```\n\n## \ud83d\udcca Performance Tips\n\n- **Rate Limits**: Google Maps API has daily quotas - consider caching results\n- **Batch Processing**: Analyze multiple locations efficiently with proper delays\n- **Error Recovery**: Implement fallback strategies for API failures\n- **Cost Optimization**: Use appropriate search radius and competitor limits\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Areas of interest:\n\n- Additional data sources integration\n- Enhanced AI prompt engineering  \n- Photo analysis algorithms\n- Restaurant industry insights\n- Documentation improvements\n\n## \ud83d\udcdd License\n\nMIT License - see LICENSE file for details.\n\n## \ud83c\udd98 Support & Resources\n\n- **\ud83c\udf10 BitePics Website**: [bite.pics](https://bite.pics) - Professional AI food photo enhancement\n- **\ud83d\udce7 Email**: info@bite.pics\n- **\ud83d\udc1b Issues**: [GitHub Issues](https://github.com/bitepics/bitepics-python/issues)\n- **\ud83d\udcd6 Documentation**: [Full API docs](https://bite.pics/docs)\n\n## \ud83c\udf55 Real-World Example\n\n```python\nfrom bitepics import RestaurantLocationAnalyzer, generate_marketing_checklist\n\n# Analyze pizzeria in competitive area\nanalyzer = RestaurantLocationAnalyzer()\nanalysis = analyzer.analyze_location(\n    \"Tony's Authentic Pizza\",\n    \"Little Italy, New York, NY\"\n)\n\nprint(f\"\ud83c\udf55 Analysis for {analysis['restaurant']['name']}\")\nprint(f\"\ud83d\udccd Found {len(analysis['competitors'])} competitors\")\nprint(f\"\ud83d\udcf8 Photo opportunity: {analysis['insights']['photo_strategy']}\")\n\n# Generate actionable checklist\nchecklist = generate_marketing_checklist(analysis)\nprint(\"\\n\u2705 Marketing Action Items:\")\nfor item in checklist:\n    print(f\"   {item}\")\n```\n\n---\n\n**Ready to transform your restaurant's marketing?**  \nVisit [bite.pics](https://bite.pics) for professional AI-powered food photo enhancement starting around $1 per image.\n\n*Democratizing professional food photography through AI innovation.*\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AI-powered restaurant location analysis using Google Maps and LLM insights for marketing optimization",
    "version": "1.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/bitepics/bitepics-python/issues",
        "Documentation": "https://bite.pics/docs",
        "Homepage": "https://bite.pics",
        "Repository": "https://github.com/bitepics/bitepics-python"
    },
    "split_keywords": [
        "restaurant",
        " location",
        " analysis",
        " google-maps",
        " ai",
        " marketing",
        " food-business",
        " llm",
        " bitepics",
        " business-intelligence",
        " geo-analysis",
        " restaurant-marketing",
        " food-photography",
        " ai-enhancement"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bb3270de13fdd8d9fcbdf25a349dbc71d4084d73fb7f4228d3c4de6f9db74319",
                "md5": "a7714f4896c67dd4b67725de803adf6f",
                "sha256": "c4b191c4c8b8127c38bfafd78c1e9ebf6fed7cfb4778fcd9901d10882966bc40"
            },
            "downloads": -1,
            "filename": "bitepics-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a7714f4896c67dd4b67725de803adf6f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 15502,
            "upload_time": "2025-08-22T09:44:50",
            "upload_time_iso_8601": "2025-08-22T09:44:50.973465Z",
            "url": "https://files.pythonhosted.org/packages/bb/32/70de13fdd8d9fcbdf25a349dbc71d4084d73fb7f4228d3c4de6f9db74319/bitepics-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-22 09:44:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bitepics",
    "github_project": "bitepics-python",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "bitepics"
}
        
Elapsed time: 0.91992s