blissful-basics


Nameblissful-basics JSON
Version 0.2.37 PyPI version JSON
download
home_pagehttps://github.com/jeff-hykin/blissful_basics.git
SummaryTools I need in every python project
upload_time2024-04-12 15:27:02
maintainerNone
docs_urlNone
authorJeff Hykin
requires_python>=3.6
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # What is this?

The tools I find myself copying and pasting between every python project.

# How do I use this?

`pip install blissful_basics`


```python
from blissful_basics import print, flatten, to_pure, stringify, stats, product, countdown, large_pickle_save, large_pickle_load, FS, Object

# 
# print helpers
# 
if 1:
    # settings
    print.indent.string = "    "
    
    # recursively indents function calls
    @print.indent.function 
    def my_func(counter=5):
        if counter <= 0: return
        print(f"function call {counter} start")
        my_func(counter-1)
        print(f"function call {counter} done")
    
    
    my_func()
    
    #    function call 5 start
    #        function call 4 start
    #            function call 3 start
    #                function call 2 start
    #                    function call 1 start
    #                    function call 1 done
    #                function call 2 done
    #            function call 3 done
    #        function call 4 done
    #    function call 5 done
    
    
    # simple indent
    with print.indent:
        print("howdy1")
        with print.indent:
            print("howdy2")
        print("howdy3")
    
    #    howdy1
    #        howdy2
    #    howdy3
    
    # also indents stuff from the function
    with print.indent.block("stuff"):
        print("hi")
        my_func()
    
    # stuff
    #     hi
    #        function call 5 start
    #            function call 4 start
    #                function call 3 start
    #                    function call 2 start
    #                        function call 1 start
    #                        function call 1 done
    #                    function call 2 done
    #                function call 3 done
    #            function call 4 done
    #        function call 5 done

# 
# to_pure()
# 
if 1:
    import numpy
    import torch

    to_pure(numpy.array([1,2,3,4,5]))   # [1,2,3,4,5]
    to_pure(torch.tensor([1,2,3,4,5]))  # [1,2,3,4,5] # even if its on a GPU device

# 
# stats
# 
if 1:
    stats([1,2,3,4,5])
    # Object(
    #     max = 5,
    #     min = 1,
    #     range = 4,
    #     count = 5,
    #     sum = 15,
    #     average = 3.0,
    #     stdev = 1.5811388300841898,
    #     median = 3,
    #     q1 = 1.5,
    #     q3 = 4.5,
    #     normalized = (0.0, 0.25, 0.5, 0.75, 1.0),
    # )

# 
# plain object
# 
if 1:
    a = Object(thing=10)
    a.thing # 10
    a.thing = 99
    a.thing # 99
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jeff-hykin/blissful_basics.git",
    "name": "blissful-basics",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Jeff Hykin",
    "author_email": "jeff.hykin@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/cc/15/dfbf414fb6d1456c779c87791aa5457fa34c78a88eb221faf3450f6ca621/blissful_basics-0.2.37.tar.gz",
    "platform": null,
    "description": "# What is this?\n\nThe tools I find myself copying and pasting between every python project.\n\n# How do I use this?\n\n`pip install blissful_basics`\n\n\n```python\nfrom blissful_basics import print, flatten, to_pure, stringify, stats, product, countdown, large_pickle_save, large_pickle_load, FS, Object\n\n# \n# print helpers\n# \nif 1:\n    # settings\n    print.indent.string = \"    \"\n    \n    # recursively indents function calls\n    @print.indent.function \n    def my_func(counter=5):\n        if counter <= 0: return\n        print(f\"function call {counter} start\")\n        my_func(counter-1)\n        print(f\"function call {counter} done\")\n    \n    \n    my_func()\n    \n    #    function call 5 start\n    #        function call 4 start\n    #            function call 3 start\n    #                function call 2 start\n    #                    function call 1 start\n    #                    function call 1 done\n    #                function call 2 done\n    #            function call 3 done\n    #        function call 4 done\n    #    function call 5 done\n    \n    \n    # simple indent\n    with print.indent:\n        print(\"howdy1\")\n        with print.indent:\n            print(\"howdy2\")\n        print(\"howdy3\")\n    \n    #    howdy1\n    #        howdy2\n    #    howdy3\n    \n    # also indents stuff from the function\n    with print.indent.block(\"stuff\"):\n        print(\"hi\")\n        my_func()\n    \n    # stuff\n    #     hi\n    #        function call 5 start\n    #            function call 4 start\n    #                function call 3 start\n    #                    function call 2 start\n    #                        function call 1 start\n    #                        function call 1 done\n    #                    function call 2 done\n    #                function call 3 done\n    #            function call 4 done\n    #        function call 5 done\n\n# \n# to_pure()\n# \nif 1:\n    import numpy\n    import torch\n\n    to_pure(numpy.array([1,2,3,4,5]))   # [1,2,3,4,5]\n    to_pure(torch.tensor([1,2,3,4,5]))  # [1,2,3,4,5] # even if its on a GPU device\n\n# \n# stats\n# \nif 1:\n    stats([1,2,3,4,5])\n    # Object(\n    #     max = 5,\n    #     min = 1,\n    #     range = 4,\n    #     count = 5,\n    #     sum = 15,\n    #     average = 3.0,\n    #     stdev = 1.5811388300841898,\n    #     median = 3,\n    #     q1 = 1.5,\n    #     q3 = 4.5,\n    #     normalized = (0.0, 0.25, 0.5, 0.75, 1.0),\n    # )\n\n# \n# plain object\n# \nif 1:\n    a = Object(thing=10)\n    a.thing # 10\n    a.thing = 99\n    a.thing # 99\n```\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Tools I need in every python project",
    "version": "0.2.37",
    "project_urls": {
        "Homepage": "https://github.com/jeff-hykin/blissful_basics.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac5497ad3e399cc5add0155a43dc4c108cdce1170e90fa03be695aee2bbd28f2",
                "md5": "3f9dbb33149733ad7a88796e77b85aca",
                "sha256": "83834e9b1e487c3bdab49c5ce7d47428a69d6b5953acdacd28f8db3bbcd83ada"
            },
            "downloads": -1,
            "filename": "blissful_basics-0.2.37-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3f9dbb33149733ad7a88796e77b85aca",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 3532606,
            "upload_time": "2024-04-12T15:27:00",
            "upload_time_iso_8601": "2024-04-12T15:27:00.215763Z",
            "url": "https://files.pythonhosted.org/packages/ac/54/97ad3e399cc5add0155a43dc4c108cdce1170e90fa03be695aee2bbd28f2/blissful_basics-0.2.37-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cc15dfbf414fb6d1456c779c87791aa5457fa34c78a88eb221faf3450f6ca621",
                "md5": "d4ebffafbe440d8f0c6171698ed35984",
                "sha256": "4d951df5e23151c7c26f9d540670dcd58f29e667a1363e23b40337ff6b2015a6"
            },
            "downloads": -1,
            "filename": "blissful_basics-0.2.37.tar.gz",
            "has_sig": false,
            "md5_digest": "d4ebffafbe440d8f0c6171698ed35984",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 3509926,
            "upload_time": "2024-04-12T15:27:02",
            "upload_time_iso_8601": "2024-04-12T15:27:02.420409Z",
            "url": "https://files.pythonhosted.org/packages/cc/15/dfbf414fb6d1456c779c87791aa5457fa34c78a88eb221faf3450f6ca621/blissful_basics-0.2.37.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-12 15:27:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jeff-hykin",
    "github_project": "blissful_basics",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "blissful-basics"
}
        
Elapsed time: 0.20027s